27 research outputs found
Ocular exposure to occupational non-ionising radiation in professional pilots
Research evidence supports the link between long term exposure to ultraviolet (UV)
and the blue light hazard with ocular damage including cataract and macular
degeneration. Population studies to determine the prevalence of these conditions in
pilots are inconclusive. It is known that UV and blue light intensities increase with
altitude. The aim of this research was to investigate whether professional pilots are
adequately protected from UV and short wavelength light during flight.
Informed by the results of 22 semi-structured interviews, a questionnaire exploring
the eye protection habits of professional pilots was developed and completed by
2,967 participants. The results showed a wide variation in pilot use of sunglasses,
uncovered barriers preventing sunglass use and showed a high level of
dissatisfaction regarding standard aircraft sun protection systems.
In flight irradiance measurements were captured during 6 airline and 4 helicopter
flights. No measurable UVB was found. UVA exposure was highly reliant on the
transmission properties of the aircraft windshield. Further ground measurements on
15 aircraft showed the majority had windshields which transmit significant levels of
UVA into the cockpit. This can cause the ocular dose for the unprotected eye to
exceed international recommended exposure limits within ½ hour of flight. Older
aircraft generally had superior UVA blocking windshields. Although calculated
retinal exposure to blue light hazard during flight fell well within international
recommended limits, the mean radiance was 4.1 times higher at altitude. The effect
of this over a flying career remains uncertain.
Filter transmittance measurements were taken from 34 pilot sunglasses and 20 new
sunglasses typically used by pilots. All sunglasses filters measured offered
sufficient protection from UVA in flight and ensured an attenuation of the blue light
hazard to levels equivalent to those at ground level without protection.
A series of practical recommendations are made to pilots, eye care health
professionals, industry and the aviation regulator
Sunglass Filter Transmission and Its Operational Effect in Solar Protection for Civilian Pilots.
INTRODUCTION: The ocular effects of excess solar radiation exposure are well documented. Recent evidence suggests that ocular ultraviolet radiation (UVR) exposure to professional pilots may fall outside international guideline limits unless eye protection is used. Nonprescription sunglasses should be manufactured to meet either international or national standards. The mean increase in UVR and blue light hazards at altitude has been quantified and the aim of this research was to assess the effectiveness of typical pilot sunglasses in reducing UVR and blue light hazard exposure in flight. METHOD: A series of sunglass filter transmittance measurements were taken from personal sunglasses (N = 20) used by pilots together with a series of new sunglasses (N = 18). RESULTS: All nonprescription sunglasses measured conformed to international standards for UVR transmittance and offered sufficient UVR protection for pilots. There was no difference between right and left lenses or between new and used sunglasses. All sunglasses offered sufficient attenuation to counter the mean increase in blue light exposure that pilots experience at altitude, although used sunglasses with scratched lenses were marginally less effective. One pair of prescription sunglasses offered insufficient UVR attenuation for some flights, but would have met requirements of international and national standards for UV-A transmittance. This was likely due to insufficient UVR blocking properties of the lens material. CONCLUSIONS: Lenses manufactured to minimally comply with standards for UVR transmittance could result in excess UVR exposure to a pilot based on in-flight irradiance data; an additional requirement of less than 10% transmittance at 380 nm is recommended
Radio frequency measurements of tunnel couplings and singlet–triplet spin states in Si:P quantum dots
Spin states of the electrons and nuclei of phosphorus donors in silicon are strong candidates for quantum information processing applications given their excellent coherence times. Designing a scalable donor-based quantum computer will require both knowledge of the relationship between device geometry and electron tunnel couplings, and a spin readout strategy that uses minimal physical space in the device. Here we use radio frequency reflectometry to measure singlet–triplet states of a few-donor Si:P double quantum dot and demonstrate that the exchange energy can be tuned by at least two orders of magnitude, from 20 μeV to 8 meV. We measure dot–lead tunnel rates by analysis of the reflected signal and show that they change from 100 MHz to 22 GHz as the number of electrons on a quantum dot is increased from 1 to 4. These techniques present an approach for characterizing, operating and engineering scalable qubit devices based on donors in silicon
Workloads and strain process in Community Health Agents
ABSTRACT OBJECTIVE To identify the workloads present in the work activities of community health agents (CHAs) and the resulting strain processes. METHOD A descriptive, exploratory, cross-sectional and quantitative study conducted with 137 CHAs. Data were collected through a questionnaire and interview guided by the health surveillance software called SIMOSTE (Health Monitoring System of Nursing Workers), following the ethical codes of the current law. RESULTS In total, were identified 140 workloads involved in 122 strain processes, represented by the occurrence of health problems of the CHAs. The mechanical (55.00%) and biological (16.43%) loads stood out. The most common strain processes were the external causes of morbidity and mortality (62.31%) and diseases of the musculoskeletal system and connective tissue (10.66%). CONCLUSION From the identified overloads, it became evident that all workloads are present in the work process of CHAs, highlighting the mechanical load, represented mainly by external causes of morbidity and mortality that are related to occupational accidents
GIS and spatial data analysis: Converging perspectives
We take as our starting point the state of geographic information systems (GIS) and spatial data analysis 50 years ago when regional science emerged as a new field of enquiry. In the late 1950s and 1960s advances in computing technology were making possible forms of automated cartography that in due course would lead to th
Agriculture, transportation and the timing of urbanization: Global analysis at the grid cell level
Study protocol: the effect of whole body vibration on acute unilateral unstable lateral ankle sprain- a biphasic randomized controlled trial
A framework for the extraction and modeling of fact-finding reasoning from legal decisions: lessons from the Vaccine/Injury Project Corpus
This article describes the Vaccine/Injury Project Corpus, a collection of legal decisions awarding or denying compensation for health injuries allegedly due to vaccinations, together with models of the logical structure of the reasoning of the factfinders in those cases. This unique corpus provides useful data for formal and informal logic theory, for natural-language research in linguistics, and for artificial intelligence research. More importantly, the article discusses lessons learned from developing protocols for manually extracting the logical structure and generating the logic models. It identifies sub-tasks in the extraction process, discusses challenges to automation, and provides insights into possible solutions for automation. In particular, the framework and strategies developed here, together with the corpus data, should allow top-down and contextual approaches to automation, which can supplement bottom-up linguistic approaches. Illustrations throughout the article use examples drawn from the Corpus
