7 research outputs found

    Compositional Explanation of Types and Algorithmic Debugging of Type Errors

    Get PDF
    The type systems of most typed functional programming languages are based on the Hindley-Milner type system. A practical problem with these type systems is that it is often hard to understand why a program is not type correct or a function does not have the intended type. We suggest that at the core of this problem is the difficulty of explaining why a given expression has a certain type. The type system is not defined compositionally. We propose to explain types using a variant of the Hindley-Milner type system that defines a compositional type explanation graph of principal typings. We describe how the programmer understands types by interactive navigation through the explanation graph. Furthermore, the explanation graph can be the foundation for algorithmic debugging of type errors, that is, semi-automatic localisation of the source of a type error without even having to understand the type inference steps. We implemented a prototype of a tool to explore the usefulness of the proposed methods

    Diagnosing Type Errors with Class

    Full text link
    Type inference engines often give terrible error messages, and the more sophisticated the type system the worse the problem. We show that even with highly expressive type system implemented by the Glasgow Haskell Compiler (GHC)--including type classes, GADTs, and type families—it is possible to identify the most likely source of the type error, rather than the first source that the inference engine trips over. To determine which are the likely error sources, we apply a simple Bayesian model to a graph representation of the typing constraints; the satisfiability or unsatisfiability of paths within the graph provides evidence for or against possible explanations. While we build on prior work on error diagnosis for simpler type systems, inference in the richer type system of Haskell requires extending the graph with new nodes. The augmentation of the graph creates challenges both for Bayesian reasoning and for ensuring termination. Using a large corpus of Haskell programs, we show that this error localization technique is practical and significantly improves accuracy over the state of the art.the Office of Naval N00014-13-1-0089; MURI grant FA9550-12-1-0400; NSF CCF-096440

    Diagnosing type errors with class

    No full text
    Type inference engines often give terrible error messages, and the more sophisticated the type system the worse the problem. We show that even with the highly expressive type system implemented by the Glasgow Haskell Compiler (GHC)—including type classes, GADTs, and type families—it is possible to identify the most likely source of the type error, rather than the first source that the in-ference engine trips over. To determine which are the likely error sources, we apply a simple Bayesian model to a graph represen-tation of the typing constraints; the satisfiability or unsatisfiability of paths within the graph provides evidence for or against possible explanations. While we build on prior work on error diagnosis for simpler type systems, inference in the richer type system of Haskell requires extending the graph with new nodes. The augmentation of the graph creates challenges both for Bayesian reasoning and for ensuring termination. Using a large corpus of Haskell programs, we show that this error localization technique is practical and sig-nificantly improves accuracy over the state of the art

    Diagnosing type errors with class

    No full text

    Toward General Diagnosis of Static Errors

    No full text
    We introduce a general way to locate programmer mistakes that are detected by static analyses such as type checking. The program analysis is expressed in a constraint language in which mistakes result in unsatisfiable constraints. Given an unsatisfiable system of constraints, both satisfiable and unsatisfiable constraints are analyzed, to identify the program expressions most likely to be the cause of unsatisfiability. The likelihood of different error explanations is evaluated under the assumption that the programmer’s code is mostly correct, so the simplest explanations are chosen, following Bayesian principles. For analyses that rely on programmer-stated assumptions, the diagnosis also identifies assumptions likely to have been omitted. The new error diagnosis approach has been implemented for two very different program analyses: type inference in OCaml and information flow checking in Jif. The effectiveness of the approach is evaluated using previously collected programs containing errors. The results show that when compared to existing compilers and other tools, the general technique identifies the location of programmer errors significantly more accurately
    corecore