23 research outputs found

    Plenary Session: Transforming Students, Transforming Ourselves

    No full text
    No form of education is more dedicated to the ongoing transformation of students, knowledge and society than the American liberal arts model. But in the midst of all the challenges and possibilities facing us, naming our own emerging transformations is difficult. Old categories fail to describe our new realities, and new concepts often seem superficial. Yet a powerful framing is necessary for people to understand us and to allow us to effect the transformations that are so fundamental to our mission

    Horizons in feminist theology. : Identity, tradition, and norms.

    No full text
    Minneapolisvii, 264 p.; 23 cm

    The Praxis Of Suffering: An interpretation of liberation and political

    No full text
    New Yorkxi, 178 p.; 24 c

    The Theology of Liberation

    No full text

    XRFast a new software package for processing of MA-XRF datasets using machine learning

    No full text
    X-ray fluorescence (XRF) spectroscopy is a common technique in the field of heritage science. However, data processing and data interpretation remain a challenge as they are time consuming and often require a priori knowledge of the composition of the materials present in the analyzed objects. For this reason, we developed an open-source, unsupervised dictionary learning algorithm reducing the complexity of large datasets containing 10s of thousands of spectra and identifying patterns. The algorithm runs in Julia, a programming language that allows for faster data processing compared to Python and R. This approach quickly reduces the number of variables and creates correlated elemental maps, characteristic for pigments containing various elements or for pigment mixtures. This alternative approach creates an overcomplete dictionary which is learned from the input data itself, therefore reducing the a priori user knowledge. The feasibility of this method was first confirmed by applying it to a mock-up board containing various known pigment mixtures. The algorithm was then applied to a macro XRF (MA-XRF) data set obtained on an 18th century Mexican painting, and positively identified smalt (pigment characterized by the co-occurrence of cobalt, arsenic, bismuth, nickel, and potassium), mixtures of vermilion and lead white, and two complex conservation materials/interventions. Moreover, the algorithm identified correlated elements that were not identified using the traditional elemental maps approach without image processing. This approach proved very useful as it yielded the same conclusions as the traditional elemental maps approach followed by elemental maps comparison but with a much faster data processing time. Furthermore, no image processing or user manipulation was required to understand elemental correlation. This open-source, open-access, and thus freely available code running in a platform allowing faster processing and larger data sets represents a useful resource to understand better the pigments and mixtures used in historical paintings and their possible various conservation campaigns.Green Open Access added to TU Delft Institutional Repository 'You share, we take care!' - Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Team Matthias Alfel
    corecore