5 research outputs found

    Combined use of Wild-Type HBV precore and high herum iron marker as a potential tool for the prediction of cirrhosis in chronic Hepatitis B infection

    No full text
    Hepatitis B virus (HBV) and high liver iron deposits have both been associated with the development of cirrhosis. Among HBV factors, genotype and mutations in the basal core promoter (BCP) and precore regions have been most frequently studied but the evidence for a positive association with cirrhosis has been inconsistent. In this study, sera from persons with chronic HBV infection with and without cirrhosis were used for whole HBV genome analysis and for the estimation of serum iron marker (serum iron or ferritin) levels. Single codon analysis showed that the precore wild-type, TGG (nt 1,895-1,897), gave the highest accuracy (77.5) for the identification of cirrhosis compared to other codons. When TGG was analyzed together with the precore start codon wild-type, ATG (nt 1,814-1,816), the accuracy was improved to 80.0 (odds ratio = 35.29; 95 confidence interval = 3.87-321.93; Phi = 0.629; P < 0.001). When the serum iron marker was included for analysis, it was clear that a combination of a precore wild-type and high serum iron marker gave a better accuracy (90.0) (odds ratio = 107.67; 95 confidence interval = 10.21-1,135.59; Phi = 0.804; P < 0.001) for the identification of cirrhosis than either biomarker alone. It appeared that a combined use of both these biomarkers might help to predict the development of cirrhosis in a person with chronic HBV infection, but longitudinal studies are required to test this hypothesis. J. Med. Virol. 83:594-601, 2011. (C) 2011 Wiley-Liss, Inc

    Cross-border sexual transmission of the newly emerging HIV-1 clade CRF51-01B

    No full text
    10.1371/journal.pone.0111236PLoS ONE910e11123

    Performance of a taqman assay for improved detection and quantification of human rhinovirus viral load

    No full text
    10.1038/srep34855Scientific Reports63485

    Co-infections and transmission networks of HCV, HIV-1 and HPgV among people who inject drugs

    No full text
    Co-infections with human immunodeficiency virus type 1 (HIV-1) and human pegivirus (HPgV) are common in hepatitis C virus (HCV)-infected individuals. However, analysis on the evolutionary dynamics and transmission network profiles of these viruses among individuals with multiple infections remains limited. A total of 228 injecting drug users (IDUs), either HCV-and/or HIV-1-infected, were recruited in Kuala Lumpur, Malaysia. HCV, HIV-1 and HPgV genes were sequenced, with epidemic growth rates assessed by the Bayesian coalescent method. Based on the sequence data, mono-, dual-and triple-infection were detected in 38.8%, 40.6% and 20.6% of the subjects, respectively. Fifteen transmission networks involving HCV (subtype 1a, 1b, 3a and 3b), HIV-1 (CRF33-01B) and HPgV (genotype 2) were identified and characterized. Genealogical estimates indicated that the predominant HCV, HIV-1 and HPgV genotypes were introduced into the IDUs population through multiple sub-epidemics that emerged as early as 1950s (HCV), 1980s (HIV-1) and 1990s (HPgV). By determining the difference in divergence times between viral lineages (δtMRCA), we also showed that the frequency of viral co-transmission is low among these IDUs. Despite increased access to therapy and other harm reduction interventions, the continuous emergence and coexistence of new transmission networks suggest persistent multiple viral transmissions among IDUs

    Molecular epidemiology and evolutionary histories of human coronavirus OC43 and HKU1 among patients with upper respiratory tract infections in Kuala Lumpur, Malaysia

    No full text
    Background: Despite the worldwide circulation of human coronavirus OC43 (HCoV-OC43) and HKU1 (HCoV-HKU1), data on their molecular epidemiology and evolutionary dynamics in the tropical Southeast Asia region is lacking. Methods: The study aimed to investigate the genetic diversity, temporal distribution, population history and clinical symptoms of betacoronavirus infections in Kuala Lumpur, Malaysia between 2012 and 2013. A total of 2,060 adults presented with acute respiratory symptoms were screened for the presence of betacoronaviruses using multiplex PCR. The spike glycoprotein, nucleocapsid and 1a genes were sequenced for phylogenetic reconstruction and Bayesian coalescent inference. Results: A total of 48/2060 (2.4 %) specimens were tested positive for HCoV-OC43 (1.3 %) and HCoV-HKU1 (1.1 %). Both HCoV-OC43 and HCoV-HKU1 were co-circulating throughout the year, with the lowest detection rates reported in the October-January period. Phylogenetic analysis of the spike gene showed that the majority of HCoV-OC43 isolates were grouped into two previously undefined genotypes, provisionally assigned as novel lineage 1 and novel lineage 2. Sign of natural recombination was observed in these potentially novel lineages. Location mapping showed that the novel lineage 1 is currently circulating in Malaysia, Thailand, Japan and China, while novel lineage 2 can be found in Malaysia and China. Molecular dating showed the origin of HCoV-OC43 around late 1950s, before it diverged into genotypes A (1960s), B (1990s), and other genotypes (2000s). Phylogenetic analysis revealed that 27.3 % of the HCoV-HKU1 strains belong to genotype A while 72.7 % belongs to genotype B. The tree root of HCoV-HKU1 was similar to that of HCoV-OC43, with the tMRCA of genotypes A and B estimated around the 1990s and 2000s, respectively. Correlation of HCoV-OC43 and HCoV-HKU1 with the severity of respiratory symptoms was not observed. Conclusions: The present study reported the molecular complexity and evolutionary dynamics of human betacoronaviruses among adults with acute respiratory symptoms in a tropical country. Two novel HCoV-OC43 genetic lineages were identified, warranting further investigation on their genotypic and phenotypic characteristics
    corecore