6 research outputs found

    Optical Properties and Electronic Energy Relaxation of Metallic Au<sub>144</sub>(SR)<sub>60</sub> Nanoclusters

    No full text
    Electronic energy relaxation of Au<sub>144</sub>(SR)<sub>60</sub><sup>q</sup> ligand-protected nanoclusters, where SR = SC<sub>6</sub>H<sub>13</sub> and <i>q</i> = −1, 0, +1, and +2, was examined using femtosecond time-resolved transient absorption spectroscopy. The observed differential transient spectra contained three distinct components: (1) transient bleaches at 525 and 600 nm, (2) broad visible excited-state absorption (ESA), and (3) stimulated emission (SE) at 670 nm. The bleach recovery kinetics depended upon the excitation pulse energy and were thus attributed to electron–phonon coupling typical of metallic nanostructures. The prominent bleach at 525 nm was assigned to a core-localized plasmon resonance (CLPR). ESA decay kinetics were oxidation-state dependent and could be described using a metal-sphere charging model. The dynamics, emission energy, and intensity of the SE peak exhibited dielectric-dependent responses indicative of Superatom charge transfer states. On the basis of these data, the Au<sub>144</sub>(SR)<sub>60</sub> system is the smallest-known nanocluster to exhibit quantifiable electron dynamics and optical properties characteristic of metals

    Ligand- and Solvent-Dependent Electronic Relaxation Dynamics of Au<sub>25</sub>(SR)<sub>18</sub><sup>–</sup> Monolayer-Protected Clusters

    No full text
    Electronic relaxation dynamics of Au<sub>25</sub>(PET)<sub>18</sub><sup>–1</sup> and Au<sub>25</sub>(PET*)<sub>18</sub><sup>–1</sup> monolayer-protected clusters (MPCs) were examined using femtosecond time-resolved transient absorption spectroscopy (fsTA). The use of two different excitation wavelengths (400 and 800 nm) allowed for quantification of state-resolved and ligand-dependent carrier dynamics for gold MPCs. Specifically, one-photon 400 nm (3.1 eV) and two-photon 800 nm (1.55 eV) interband excitations promoted electrons from the MPC ligand band into gold superatom d states. Following rapid internal conversion, carriers generated by interband excitation exhibited picosecond relaxation dynamics that depended upon both ligand structure and the dielectric of the dispersing medium. These solvent- and ligand-dependent effects were attributed to charge-transfer processes mediated by the manifold of ligand-based states. In contrast, one-photon intraband (gold sp–sp) excitation by 800 nm light resulted in solvent- and ligand-independent relaxation dynamics. The observed solvent independences of these data were attributed to internal relaxation via superatom p and d states localized to the MPC core. Effectively, these core-based transitions were screened from dielectric influences of the dispersing medium by the MPC gold–thiolate protecting units. Additionally, a low frequency (2.4 THz) modulation of TA signal amplitude was detected following intraband excitation. The 2.4 THz mode was consistent with Au–Au expansion in the MPC core. Based on these data, we conclude that intraband relaxation among the MPC Superatom states is mediated by low-frequency vibrations of the gold core. Structure-specific and state-resolved descriptions of MPC electron dynamics are necessary for integration of metal clusters as functional components in photonic materials

    On the pH-Dependent Quenching of Quantum Dot Photoluminescence by Redox Active Dopamine

    No full text
    We investigated the charge transfer interactions between luminescent quantum dots (QDs) and redox active dopamine. For this, we used pH-insensitive ZnS-overcoated CdSe QDs rendered water-compatible using poly (ethylene glycol)-appended dihydrolipoic acid (DHLA-PEG), where a fraction of the ligands was amine-terminated to allow for controlled coupling of dopamine–isothiocyanate onto the nanocrystal. Using this sample configuration, we probed the effects of changing the density of dopamine and the buffer pH on the fluorescence properties of these conjugates. Using steady-state and time-resolved fluorescence, we measured a pronounced pH-dependent photoluminescence (PL) quenching for all QD-dopamine assemblies. Several parameters affect the PL loss. First, the quenching efficiency strongly depends on the number of dopamines per QD-conjugate. Second, the quenching efficiency is substantially increased in alkaline buffers. Third, this pH-dependent PL loss can be completely eliminated when oxygen-depleted buffers are used, indicating that oxygen plays a crucial role in the redox activity of dopamine. We attribute these findings to charge transfer interactions between QDs and mainly two forms of dopamine: the reduced catechol and oxidized quinone. As the pH of the dispersions is changed from acidic to basic, oxygen-catalyzed transformation progressively reduces the dopamine potential for oxidation and shifts the equilibrium toward increased concentration of quinones. Thus, in a conjugate, a QD can simultaneously interact with quinones (electron acceptors) and catechols (electron donors), producing pH-dependent PL quenching combined with shortening of the exciton lifetime. This also alters the recombination kinetics of the electron and hole of photoexcited QDs. Transient absorption measurements that probed intraband transitions supported those findings where a simultaneous pronounced change in the electron and hole relaxation rates was measured when the pH was changed from acidic to alkaline

    Dynamic Diglyme-Mediated Self-Assembly of Gold Nanoclusters

    No full text
    We report the assembly of gold nanoclusters by the nonthiolate ligand diglyme into discrete and dynamic assemblies. To understand this surprising phenomenon, the assembly of Au<sub>20</sub>(SC<sub>2</sub>H<sub>4</sub>Ph)<sub>15</sub>-diglyme into Au<sub>20</sub>(SC<sub>2</sub>H<sub>4</sub>Ph)<sub>15</sub>-diglyme-Au<sub>20</sub>(SC<sub>2</sub>H<sub>4</sub>Ph)<sub>15</sub> is explored in detail. The assembly is examined by high-angle annular dark field scanning transmission electron microscopy, size exclusion chromatography, mass spectrometry, IR spectroscopy, and calorimetry. We establish a dissociation constant for dimer to monomer conversion of 20.4 μM. Theoretical models validated by transient absorption spectroscopy predict a low-spin monomer and a high-spin dimer, with assembly enabled through weak diglyme oxygen–gold interactions. Close spatial coupling allows electron delocalization between the nanoparticle cores. The resulting assemblies thus possess optical and electronic properties that emerge as a result of assembly

    Optomechanics of Single Aluminum Nanodisks

    No full text
    Aluminum nanostructures support tunable surface plasmon resonances and have become an alternative to gold nanoparticles. Whereas gold is the most-studied plasmonic material, aluminum has the advantage of high earth abundance and hence low cost. In addition to understanding the size and shape tunability of the plasmon resonance, the fundamental relaxation processes in aluminum nanostructures after photoexcitation must be understood to take full advantage of applications such as photocatalysis and photodetection. In this work, we investigate the relaxation following ultrafast pulsed excitation and the launching of acoustic vibrations in individual aluminum nanodisks, using single-particle transient extinction spectroscopy. We find that the transient extinction signal can be assigned to a thermal relaxation of the photoexcited electrons and phonons. The ultrafast heating-induced launching of in-plane acoustic vibrations reveals moderate binding to the glass substrate and is affected by the native aluminum oxide layer. Finally, we compare the behavior of aluminum nanodisks to that of similarly prepared and sized gold nanodisks

    Polycrystallinity of Lithographically Fabricated Plasmonic Nanostructures Dominates Their Acoustic Vibrational Damping

    No full text
    The study of acoustic vibrations in nanoparticles provides unique and unparalleled insight into their mechanical properties. Electron-beam lithography of nanostructures allows precise manipulation of their acoustic vibration frequencies through control of nanoscale morphology. However, the dissipation of acoustic vibrations in this important class of nanostructures has not yet been examined. Here we report, using single-particle ultrafast transient extinction spectroscopy, the intrinsic damping dynamics in lithographically fabricated plasmonic nanostructures. We find that in stark contrast to chemically synthesized, monocrystalline nanoparticles, acoustic energy dissipation in lithographically fabricated nanostructures is solely dominated by intrinsic damping. A quality factor of <i>Q</i> = 11.3 ± 2.5 is observed for all 147 nanostructures, regardless of size, geometry, frequency, surface adhesion, and mode. This result indicates that the complex Young’s modulus of this material is independent of frequency with its imaginary component being approximately 11 times smaller than its real part. Substrate-mediated acoustic vibration damping is strongly suppressed, despite strong binding between the glass substrate and Au nanostructures. We anticipate that these results, characterizing the optomechanical properties of lithographically fabricated metal nanostructures, will help inform their design for applications such as photoacoustic imaging agents, high-frequency resonators, and ultrafast optical switches
    corecore