5 research outputs found

    Proton pump inhibitors may enhance the risk of digestive diseases by regulating intestinal microbiota

    Get PDF
    Proton pump inhibitors (PPIs) are the most used acid-inhibitory drugs, with a wide range of applications in the treatment of various digestive diseases. However, recently, there has been a growing number of digestive complications linked to PPIs, and several studies have indicated that the intestinal flora play an important role in these complications. Therefore, developing a greater understanding of the role of the gut microbiota in PPI-related digestive diseases is essential. Here, we summarize the current research on the correlation between PPI-related digestive disorders and intestinal flora and establish the altered strains and possible pathogenic mechanisms of the different diseases. We aimed to provide a theoretical basis and reference for the future treatment and prevention of PPI-related digestive complications based on the regulation of the intestinal microbiota

    Efficacy and Safety of Teneligliptin in Patients With Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis of Randomized Controlled Trials

    No full text
    Background: Teneligliptin is a 3rd-generation dipeptidyl peptidase-4 (DPP-4) inhibitor. There is a limited evidence regarding the effect of teneligliptin. Therefore, this study is to assess the efficacy and safety of teneligliptin in type 2 diabetes mellitus (T2DM) patients with inadequately glycemic controlled.Methods: A search of PubMed, Medline, Embase, and The Cochrane Library during 2000.01–2018.03 was performed for randomized controlled trials of teneligliptin compared to placebo in patients with T2DM with monotherapy or add-on treatment.Results: Ten trials with 2119 patients were analyzed. Teneligliptin produced absolute reductions in glycated hemoglobin A1c (HbA1c) levels (weighted mean difference (WMD) 0.82%, 95% confidence interval (CI) [−0.91 to −0.72], p < 0.00001) compared with placebo. However, after 36–42 weeks of follow-up (open-label), HbA1c level rise higher than duration (double-blind) in teneligliptin group. Teneligliptin led to greater decrease of fasting plasma glucose (FPG) level (vs. placebo, WMD −18.32%, 95% CI [−21.05 to −15.60], p < 0.00001). Teneligliptin also significantly decreased the 2 h post-prandial plasma glucose (2 h PPG) (WMD −46.94%, 95% CI [−51.58 to −42.30], p < 0.00001) and area under the glucose plasma concentration-time curve from 0 to 2 h (AUC0−2h) for PPG (WMD −71.50%, 95% CI [−78.09 to −64.91], p < 0.00001) compared with placebo. Patients treated with teneligliptin achieved increased homeostasis model assessment of β cell function (HOMA-β) with 9.31 (WMD, 95% CI [7.78–10.85], p < 0.00001). However, there was no significant difference between teneligliptin and placebo in overall adverse effects (0.96 risk ratio (RR), 95% CI [0.87, 1.06], p = 0.06). The risks of hypoglycemia were not significantly different between teneligliptin and placebo (1.16 RR, 95% CI [0.59, 2.26], p = 0.66).Conclusions: Teneligliptin improved blood glucose levels and β-cells function with low risk of hypoglycemia in patients with T2DM. Common adverse effects of teneligliptin including hypoglycemia were identified and reviewed. Risks of cardiovascular events are less certain, and more data for long-term effects are needed

    A Rapid and Sensitive UHPLC–MS/MS Method for Determination of Chlorogenic Acid and Its Application to Distribution and Neuroprotection in Rat Brain

    No full text
    Chlorogenic acid (5-CQA) is a phenolic natural product that has been reported to improve neurobehavioral disorders and brain injury. However, its pharmacokinetics and distribution in the rat brain remain unclear. In this study, we established a rapid and sensitive UHPLC–MS/MS method for the determination of 5-CQA in rat plasma, cerebrospinal fluid (CSF), and brain tissue to investigate whether it could pass through the blood–brain barrier (BBB) and its distribution in the rat brain, and a Caenorhabditis elegans (C. elegans) strain paralysis assay was used to investigate the neuroprotective effect of 5-CQA in different brain tissues. Chromatographic separation of 5-CQA and glycyrrhetinic acid (GA, used as internal standard) was completed in 0.5 min, and the full run time was maintained at 4.0 min. Methodological validation results presented a high accuracy (95.69–106.81%) and precision (RSD ≤ 8%), with a lower limit of quantification of 1.0 ng/mL. Pharmacokinetic results revealed that 5-CQA can pass through the BBB into the CSF, but the permeability of BBB to 5-CQA (ratio of mean AUC0-∞ of CSF to plasma) was only approximately 0.29%. In addition, 5-CQA can penetrate into the rat brain extensively and is distributed with different intensities in different nuclei. A C. elegans strain paralysis assay indicated that the neuroprotective effect of 5-CQA is positively correlated with its content in different brain tissues. In conclusion, our study for the first time explored the BBB pass rate and brain tissue distribution of 5-CQA administered via the tail vein by the UHPLC–MS/MS method and investigated the potential main target area of 5-CQA for neuroprotection, which could provide a certain basis for the treatment of nervous system-related diseases of 5-CQA

    DataSheet_1_Phosphoproteomics reveals that cinobufotalin promotes intrahepatic cholangiocarcinoma cell apoptosis by activating the ATM/CHK2/p53 signaling pathway.zip

    No full text
    Intrahepatic cholangiocarcinoma (ICC) is a malignant tumor that originates from bile duct’s epithelial cells and is usually characterized by insidious symptoms and poor prognosis. Cinobufotalin (CB), an active ingredient obtained from the Traditional Chinese Medicine ChanSu, is purported to exhibit a wide range of antitumorigenic activities. However, the mechanism by which it achieves such pharmacological effects remains elusive. Here, we disclosed the mechanism of action by which CB inhibits ICC cells. Initial experiments revealed that the proliferation of RBE and HCCC-9810 cells was significantly inhibited by CB with IC50 values of 0.342 μM and 0.421 μM respectively. CB induced the expression of caspase-3 subsequently leading to the apoptosis of ICC cells. Phosphoproteomics revealed that the phosphorylation of many proteins associated with DNA damage response increased. Kinase-substrate enrichment analysis revealed that ATM was activated after CB treatment, while CDK1 was inactivated. Activated ATM increased p-CHK2-T68 and p-p53-S15, which promoted the expression of FAS, DR4 and DR5 and triggered cell apoptosis. In summary, this work reveals the role of CB in inducing DNA damage and cell apoptosis involved in the activation of the ATM/CHK2/p53 signaling pathway, and indicates that CB may serve as a chemotherapeutic drug candidate for ICC treatment.</p
    corecore