95 research outputs found

    NEW METHOD FOR FAST IMAGE EDGE DETECTION BASED ON SUBBAND DECOMPOSITION

    Get PDF
    ABSTRACT A new method of detection the edges of an image is presented in this article. The method uses a kind of twodimensional subband spectrum analysis (2D-SSA) filter that is based on subband decomposition, and it is very convenient to get the edge frequency spectrum of an image after certain preprocessing. Comparing with spatial methods, the method is less sensitive to noise. It is also superior to the conventional frequency methods. In conventional frequency methods, the bandwidth and central frequency of filter are fixed, and it needs to transform the whole image into frequency domain. While in this method, the bandwidth and central frequency can be adjusted flexibly, and it only uses a few pixels to implement FFT. So this method is a fast way to extract the edges of an image. The simulation results show its efficiency

    GABNet: global attention block for retinal OCT disease classification

    Get PDF
    IntroductionThe retina represents a critical ocular structure. Of the various ophthalmic afflictions, retinal pathologies have garnered considerable scientific interest, owing to their elevated prevalence and propensity to induce blindness. Among clinical evaluation techniques employed in ophthalmology, optical coherence tomography (OCT) is the most commonly utilized, as it permits non-invasive, rapid acquisition of high-resolution, cross-sectional images of the retina. Timely detection and intervention can significantly abate the risk of blindness and effectively mitigate the national incidence rate of visual impairments.MethodsThis study introduces a novel, efficient global attention block (GAB) for feed forward convolutional neural networks (CNNs). The GAB generates an attention map along three dimensions (height, width, and channel) for any intermediate feature map, which it then uses to compute adaptive feature weights by multiplying it with the input feature map. This GAB is a versatile module that can seamlessly integrate with any CNN, significantly improving its classification performance. Based on the GAB, we propose a lightweight classification network model, GABNet, which we develop on a UCSD general retinal OCT dataset comprising 108,312 OCT images from 4686 patients, including choroidal neovascularization (CNV), diabetic macular edema (DME), drusen, and normal cases.ResultsNotably, our approach improves the classification accuracy by 3.7% over the EfficientNetV2B3 network model. We further employ gradient-weighted class activation mapping (Grad-CAM) to highlight regions of interest on retinal OCT images for each class, enabling doctors to easily interpret model predictions and improve their efficiency in evaluating relevant models.DiscussionWith the increasing use and application of OCT technology in the clinical diagnosis of retinal images, our approach offers an additional diagnostic tool to enhance the diagnostic efficiency of clinical OCT retinal images

    Honokiol Crosses BBB and BCSFB, and Inhibits Brain Tumor Growth in Rat 9L Intracerebral Gliosarcoma Model and Human U251 Xenograft Glioma Model

    Get PDF
    BACKGROUND: Gliosarcoma is one of the most common malignant brain tumors, and anti-angiogenesis is a promising approach for the treatment of gliosarcoma. However, chemotherapy is obstructed by the physical obstacle formed by the blood-brain barrier (BBB) and blood-cerebrospinal fluid barrier (BCSFB). Honokiol has been known to possess potent activities in the central nervous system diseases, and anti-angiogenic and anti-tumor properties. Here, we hypothesized that honokiol could cross the BBB and BCSFB for the treatment of gliosarcoma. METHODOLOGIES: We first evaluated the abilities of honokiol to cross the BBB and BCSFB by measuring the penetration of honokiol into brain and blood-cerebrospinal fluid, and compared the honokiol amount taken up by brain with that by other tissues. Then we investigated the effect of honokiol on the growth inhibition of rat 9L gliosarcoma cells and human U251 glioma cells in vitro. Finally we established rat 9L intracerebral gliosarcoma model in Fisher 344 rats and human U251 xenograft glioma model in nude mice to investigate the anti-tumor activity. PRINCIPAL FINDINGS: We showed for the first time that honokiol could effectively cross BBB and BCSFB. The ratios of brain/plasma concentration were respectively 1.29, 2.54, 2.56 and 2.72 at 5, 30, 60 and 120 min. And about 10% of honokiol in plasma crossed BCSFB into cerebrospinal fluid (CSF). In vitro, honokiol produced dose-dependent inhibition of the growth of rat 9L gliosarcoma cells and human U251 glioma cells with IC(50) of 15.61 Β΅g/mL and 16.38 Β΅g/mL, respectively. In vivo, treatment with 20 mg/kg body weight of honokiol (honokiol was given twice per week for 3 weeks by intravenous injection) resulted in significant reduction of tumor volume (112.70Β±10.16 mm(3)) compared with vehicle group (238.63Β±19.69 mm(3), Pβ€Š=β€Š0.000), with 52.77% inhibiting rate in rat 9L intracerebral gliosarcoma model, and (1450.83Β±348.36 mm(3)) compared with vehicle group (2914.17Β±780.52 mm(3), Pβ€Š=β€Š0.002), with 50.21% inhibiting rate in human U251 xenograft glioma model. Honokiol also significantly improved the survival over vehicle group in the two models (P<0.05). CONCLUSIONS/SIGNIFICANCE: This study provided the first evidence that honokiol could effectively cross BBB and BCSFB and inhibit brain tumor growth in rat 9L intracerebral gliosarcoma model and human U251 xenograft glioma model. It suggested a significant strategy for offering a potential new therapy for the treatment of gliosarcoma

    A New Unified Solution for Deep Tunnels in Water-Rich Areas considering Pore Water Pressure

    No full text
    Pore water pressure has an important influence on the stresses and deformation of the surrounding rock of deep tunnels in water-rich areas. In this study, a mechanical model for deep tunnels subjected to a nonuniform stress field in water-rich areas is developed. Considering the pore water pressure, a new unified solution for the stresses, postpeak zone radii, and surface displacement is derived based on a strain-softening model and the Mogi-Coulomb criterion. Through a case study, the effects of pore water pressure, intermediate principal stress, and residual cohesion on the stress distribution, postpeak zone radii, and surface displacement are also discussed. Results show that the tangential stresses are always larger than the radial stress. The radial stress presents a gradually increasing trend, while the tangential stress presents a trend of first increasing and then decreasing, and the maximum tangential stress appears at the interface between the elastic and plastic zones. As the pore water pressure increases, the postpeak zone radii and surface displacement increase. Because of the neglect of the intermediate principal stress in the Mohr-Coulomb criterion, the postpeak zone radii, surface displacement, and maximum tangential stress solved by the Mohr-Coulomb criterion are all larger than those solved by the Mogi-Coulomb criterion. Tunnels surrounded by rock masses with a higher residual cohesion experience lower postpeak zone radii and surface displacement. Data presented in this study provide an important theoretical basis for supporting the tunnels in water-rich areas

    How Safety Climate Impacts Safety Voice&mdash;Investigating the Mediating Role of Psychological Safety from a Social Cognitive Perspective

    No full text
    Safety voice has become a popular research topic in the organizational safety field because it helps to prevent accidents. A good safety climate and psychological safety can motivate employees to actively express their ideas about safety, but the specific mechanisms of safety climate and psychological safety, on safety voice, are not yet clear. Based on the &ldquo;environment-subject cognition-behavior&rdquo; triadic interaction model of social cognitive theory, this paper explores the relationship between safety climate and safety voice, and the mediating role of psychological safety. We collected questionnaires and conducted data analysis of the valid questionnaires using analytical methods such as hierarchical regression, stepwise regression, and the bootstrap sampling method. We found that safety climate significantly and positively influenced safety voice, and psychological safety played a mediating role between safety climate and safety voice, which strengthened the positive relationship between them. From the research results, it was clear that to stimulate employees to express safety voice behavior, organizations should strive to create a good safety climate and pay attention to building employees&rsquo; psychological safety. The findings of this paper provide useful insights for the management of employee safety voice behavior in enterprises

    A Spiny Climbing Robot with Dual-Rail Mechanism

    No full text
    Easy detachment is as important as reliable an attachment to climbing robots in achieving stable climbing on vertical surfaces. To deal with the difficulty of detachment occurring in wheeled and track-type climbing robots using bio-inspired spines, a novel climbing robot utilizing spiny track and dual-rail mechanism is proposed in this paper. The spiny track consists of dozens of spiny feet, and the movement of each spiny foot is guided by the specially designed dual-rail mechanism to achieve reliable attachment and easy detachment. First, the design of the climbing robot and the dual-rail mechanism are presented. Then, the dual-rail model is constructed to analyze the attaching and detaching movements of the spiny feet, and a mechanical model is established to analyze the force distribution on the spiny track. Finally, a robot prototype is developed, and the analysis results are verified by the experiment results. Experiments on the prototype demonstrated that it could climb on various rough vertical surfaces at a speed of 36 mm/s, including sandpaper, brick surfaces, concrete walls with pebbles, and coarse stucco walls
    • …
    corecore