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Introduction: The retina represents a critical ocular structure. Of the various

ophthalmic a	ictions, retinal pathologies have garnered considerable scientific

interest, owing to their elevated prevalence and propensity to induce blindness.

Among clinical evaluation techniques employed in ophthalmology, optical

coherence tomography (OCT) is the most commonly utilized, as it permits non-

invasive, rapid acquisition of high-resolution, cross-sectional images of the retina.

Timely detection and intervention can significantly abate the risk of blindness and

e�ectively mitigate the national incidence rate of visual impairments.

Methods: This study introduces a novel, e�cient global attention block (GAB)

for feed forward convolutional neural networks (CNNs). The GAB generates

an attention map along three dimensions (height, width, and channel) for any

intermediate feature map, which it then uses to compute adaptive feature

weights by multiplying it with the input feature map. This GAB is a versatile

module that can seamlessly integrate with any CNN, significantly improving

its classification performance. Based on the GAB, we propose a lightweight

classification network model, GABNet, which we develop on a UCSD general

retinal OCT dataset comprising 108,312OCT images from 4686 patients, including

choroidal neovascularization (CNV), diabetic macular edema (DME), drusen, and

normal cases.

Results: Notably, our approach improves the classification accuracy by 3.7% over

the E�cientNetV2B3 network model. We further employ gradient-weighted class

activation mapping (Grad-CAM) to highlight regions of interest on retinal OCT

images for each class, enabling doctors to easily interpret model predictions and

improve their e�ciency in evaluating relevant models.

Discussion: With the increasing use and application of OCT technology in the

clinical diagnosis of retinal images, our approach o�ers an additional diagnostic

tool to enhance the diagnostic e�ciency of clinical OCT retinal images.

KEYWORDS

retinal OCT, retinal disease classification, attention mechanism, model visualization,

GABNet
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1. Introduction

The retina, the visual component responsible for sensing light

stimuli, is a soft and transparent membrane located adjacent to

the inner surface of the choroid, play an essential role in human

vision (Zrenner, 2002). In recent years, there has been a significant

increase in the number of patients with retinal disease, which can

cause irreversible damage to vision and, in severe cases, result in

blindness. Age-related macular degeneration (AMD) and diabetic

macular edema (DME) are most common retina diseases (Das,

2016). AMD is divided into two types depending on its clinical

presentation and pathological changes: dry AMD and wet AMD.

In the early stages of dry AMD, yellowish-white, rounded vitreous

warts (drusen) of varying sizes can be seen in the posterior

pole of the eye. Wet AMD induces the outward growth of new

blood vessels in the choroidal capillaries (known as choroidal

neovascularization, CNV). All these pathological features could be

important diagnostic indicators of disease progression.

Optical coherence tomography (OCT) is currently the most

advanced technique for the detection of retinal diseases, with

the advantages of being a noncontact, noninvasive and fast

imaging method (Chen and Lee, 2007). The use of OCT

technology for fundus images has becomewidespread, leading to an

improvement in the clinical diagnosis of retinal diseases. However,

the recognition capability of retinal OCT images varies greatly

between different regions, particularly in developing countries

where there is a significant shortage of expert physicians compared

to the number of patients. Therefore, there is a need to develop an

automated machine that can perform recognition on retinal OCT

images, reducing the workload of specialist physicians.

Due to the outstanding performance of deep learning in

image recognition, more and more researchers have begun to

explore its applications in the medical field. However, there

are still some challenges in applying deep learning to medical

image classification, such as the problem of obtaining enough

standardized medical images. In view of this, many researchers

have proposed different solutions, among which transfer learning

is one of the most commonly used methods. Transfer learning is

a machine learning method that is used to correlate two different

tasks. Specifically, the parameters of a model trained in one task

are transferred to the same model in another task. Since case

sourcing in the medical field is extremely difficult and medical

image recognition based on deep learning requires a large number

of cases to achieve a good classification effect. Transferred model

utilizing a model trained on a public dataset can effectively alleviate

the difficulty of collecting a dataset in the medical field. A large

number of researchers have also used transfer learning in the

medical field to obtain good classification results (Narayan Das

et al., 2022). Chougrad et al. (2018) developed a computer-aided

diagnosis system based on deep convolutional neural networks

(DCNNs) to help radiologists classify mammographic occupancy

lesions. Kassem et al. (2020) proposed a highly accurate model

for the classification of skin lesions, utilizing transfer learning

and GoogleNet for pre-training. The initial values for the model

parameters are used as before, and they are subsequently adjusted

during the training process in order to achieve the best capability to

classify various types of skin lesions.

Inspired by the human vision system, which can efficiently

view focal regions in complex scenes, a variety of plug-and-play

attention mechanisms have been investigated in computer vision

(Woo et al., 2018; Hu et al., 2020; Hou et al., 2021) and are

widely used in multiple computer vision tasks (Aditya et al.,

2021; Wang et al., 2022). Liang et al. (2020) proposed a semi-

supervised classification approach based on a CNN model and

introduced an attention mechanism to balance the sample weights.

Additionally, the focal loss was used to alleviate the poor training

effect caused by uneven samples. Farag et al. (2022) proposed

a new automatic deep learning-based method for the detection

of diabetic retinopathy (DR) severity, first using DenseNet169 as

a feature extractor and then introducing a convolutional block

attentionmodule (CBAM) on top of it to enhance its discriminative

power. Finally, the approach was tested on an external real-world

dataset, resulting a good classification capability. Deng et al. (2020)

produced a benchmark dataset of breast density images divided

into four classes: A (fatty), B (fibrous gland), C (uneven dense),

and D (dense). The method begins with data enhancement and

normalization of breast images, followed by the implementation of

a squeeze-and-excitation (SE) attention module. This module helps

to recalibrate the image features and improve the classification of

breast density.

Many scholars have also conducted researches on the issue

of retinal OCT images. Liu et al. (2011) used the global image

descriptor and local binary pattern histogram formed by a

multiscale spatial pyramid as a feature vector, which could encode

the texture and shape information of a retinal OCT image and its

edge image, respectively. Sotoudeh-Paima et al. (2022) proposed a

multiscale automated method for classifying AMD-related retinal

lesions. Their multiscale CNN architecture was designed by

feature fusion based on a feature pyramid network architecture,

enabling end-to-end training and reducing the computational

complexity of the model compared to that of using multiple

CNNs in parallel. Fang et al. (2019) proposed a novel iterative

fusion CNN method for retinal OCT image classification. In

order to exploit the information between different convolutional

layers, the proposed method introduces an iterative layer fusion

strategy. Specifically, features from the current convolutional layer

are iteratively combined with those from all previous layers in

the CNN. Experimental results show that iteratively combining

feature information from all layers can achieve better classification

results.

Therefore, the challenges in constructing a lightweight network

model for retinal OCT grading tasks are as follows.

(1) How to create a plug-and-play attention module.

(2) How to efficiently apply an attention module into a classification

network model.

2. Related work

2.1. Previous studies on retinal OCT image
analysis

In recent years, a large number of researchers have been

working on retinal OCT analysis, which can be broadly divided
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into two directions: machine learning methods based on semi-

automatic feature extraction and deep learning methods based on

fully automatic feature extraction.

Machine learning methods based on semiautomatic feature

extraction can be divided into two types: feature extraction and

classifier design techniques. The main feature extraction methods

are local binary patterns (LBPs), histograms of oriented gradients

(HOGs) and scale-invariant feature transform (SIFT) (Lee et al.,

2015). The main classifiers are random forests, support vector

machines, multilayer perceptron, naive bayes, etc. Srinivasan

et al. (2014) designed a method to classify OCT retinal lesion

images based on the HOG extracted feature to classify healthy

retina, AMD, and DME, achieving high classification accuracy.

While machine learning approaches have exhibited promising

outcomes in classifying retinal OCT images in recent years, they

are accompanied by certain limitations. First, machine learning

methods based on semi-automatic feature extraction require

manual operations, making them time-consuming and unable to

guarantee the quality of the results. In addition, the inconsistency

in retinal OCT feature extraction among experts in different regions

yields incongruity, thus resulting in inaccurate diagnosis, thereby

questioning the veracity of classification outcomes generated

by the classifier.

A deep learning approach based on fully automated feature

extraction for end-to-end retinal OCT image grading was

developed (Das et al., 2021). Kayadibi and Güraksin (2023) used

a stacked ensemble learning approach based on CNNs to detect

DME, vitreous warts and CNV disease in OCT images. First,

features were extracted from OCT images using a fine-tuned

AlexNet and then applied to classify using homogeneous and

heterogeneous stacked ensemble learning methods.

Semi-automatic feature extraction-based retinal OCT

classification methods exhibit certain limitations, including

intricate feature engineering and inadequate classification

accuracy. While deep learning-based automatic feature extraction

has several advantages and can achieve end-to-end prediction

effects in retinal OCT disease classification, the current retinal

OCT-based deep learning network models suffer from several

limitations, including a large number of network parameters and

slow model training.

2.2. Attention mechanisms

SE (Hu et al., 2020) is a new generic network module

architecture unveiled by the autonomous driving company

Momenta in 2017 (SE is shown in Figure 1). It models the

correlations between feature channels and enhances important

features to achieve improved accuracy. The addition of this

structure also resulted in an error rate of 2.251% in the top-

5 ILSVR competition. SE has been used by a large number of

researchers in various industries since its introduction (XinSheng

and Yu, 2022). Zhang et al. (2022) proposed a MobileNetV2-

SENet-based approach to identify fish foraging behavior. Firstly,

the fish images were pre-processed with some operations in order

to enhance sample diversity. Then, MobileNetV2 was used to

extract fish image features, and an SENet-based feature weighting

network was built. Weights were assigned to features with different

values. A linear classifier was used to identify the feeding behaviors

of the fish. Finally, a method was provided to determine the

amount of feeding based on the identification results to reduce

feed consumption. Li et al. (2020) fused a DenseNet with SENet

modules as the basic classification framework, and conducted

extensive experiments on the proposed framework with the public

BreakHis dataset, demonstrating the effectiveness of the proposed

framework. Yan and Hua (2020) proposed a deep residual SENet

(R-SENet) for leaf recognition. The R-SENet employs an SE strategy

to learn and obtain the importance level of each channel in

each convolutional layer of the residual block to accomplish the

recognition task. Subsequently, the weight of each channel is

readjusted by the importance level to promote relevant channels

and suppress unimportant ones.

CBAM (Woo et al., 2018) is a lightweight convolutional

attention module published in the ECCV conference by Woo et al.

in 2018 that combines both channel attention module (CAM) and

the spatial attention module (SAM) (Figure 1 shows the CBAM).

CAM and SAM pay attention to channels and space, respectively.

This procedure not only saves parameters and computational

power but also ensures that the CAM and SAM can be integrated

into existing network architectures as plug-and-playmodules. Since

its introduction, the CBAM has been used by a large number of

researchers (Chen et al., 2020; Li et al., 2021). Luo and Wang

(2021) proposed a neural network algorithm incorporating the

CBAM in the ResNet architecture by adding the residual blocks of

the attention module in the second to fifth layers of the ResNet

architecture. The results were finally output by adaptive average

pooling and fully connected layers.

Coordinate attention for efficient mobile network design

(CoorDatt) is a new attention mechanism designed for lightweight

networks that was presented by Hou et al. (2021) at CVPR in 2021

(Figure 1 presents CoorDatt), this mechanism embeds location

information into channel attention. Unlike channel attention,

which converts the given feature tensor into individual feature

vectors via 2-dimensional global pooling, coordinate attention

decomposes channel attention into two 1-dimensional feature

encoding processes that aggregate features along two spatial

directions so that remote dependencies can be captured along

one spatial direction while retaining accurate location information.

Since the introduction of the CoorDatt module, it has been used

by a large number of researchers (Shi et al., 2022; Xiang et al.,

2022). Dai et al. (2022) proposed a method for tunnel crack

identification based on an improved You Only Look Once version

5 (YOLOv5) architecture. First, tunnel cracks are labeled according

to a novel labeling method that uses one labeling box for regular

cracks and multiple boxes for irregular cracks. Second, various data

augmentations are used to improve the generalization capability

of the model. Third, training YOLOv5 in combination with the

CoorDatt module can achieve higher tunnel crack recognition

rates. Zha et al. (2021) proposed the YOLOv4_MF model. The

YOLOv4_MFmodel utilizes MobileNetV2 as the feature extraction

block and replaces the traditional convolution operation with

depthwise-separable convolution (DSC) to reduce the number of

model parameters. In addition, a coordinate attention mechanism

is embedded in MobileNetV2 to enhance feature information. A
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symmetric structure consisting of a three-layer spatial pyramid pool

is proposed, and an improved feature fusion structure is designed

to fuse the target information. For the loss function, the focal loss

is used instead of the cross-entropy loss to enhance the network’s

ability to learn small targets.

SE only considers the internal channel information in the

feature map and ignores the importance of location information,

while the spatial structures of targets in vision are quite important;

the CBAM tries to introduce location information by perform

global pooling on the channels, but this approach can only capture

local information and not long range-dependent information; the

CoorDatt approach encodes spatial information throughmaximum

pooling in the horizontal and vertical directions, then transforms

it, and finally fuses the spatial information by weighting it over

the channels. This approach is not able to resolve the information

differences between features in terms of heights, widths, and

channels, without the ability to aggregate the information across

dimensions. The GAB encodes the height, width and dimension

of each data point on the channel of the input feature map. To

reduce the number of attention mechanism parameters, we use

DSC instead of normal convolution operations.

As shown in Figure 1, the maximum pooling and average

pooling operations are first performed on the height and width,

and then the DSC operation is performed on them to extract

the spatial information of the given feature map from different

angles. The obtained feature map is concerned with the detailed

information in the image. In this paper, the channel operations

are similar to those of the CBAM, where the importance of each

channel is learned through attention mechanisms. Additionally,

global average pooling is applied to obtain global feature maps,

which focus the significant information of interest in the input

image.

This paper presents three innovative research content to tackle

the limitations of semi-automatic feature extraction, enhance deep

learning-based feature extraction methods, and fully exploit the

potential of attention mechanisms. The objective of these research

content is to improve the accuracy and efficiency of retinal OCT

disease classification.

(1) A new attention mechanism module, a global attention block

(GAB), is constructed.

(2) A new lightweight classification network model based on the

GAB is constructed.

(3) This network is validated on both internal and external retinal

OCT datasets and a fundus photograph dataset with DR.

3. GAB based on retinal OCT disease
classification

3.1. System architecture

In this study, a classification model consisting of a GAB for

retinal OCT disease classification is proposed. The classification

model architecture is divided into two modules: a retinal OCT

image preprocessing module, and a model training and prediction

module. The system architecture is shown in Figure 2. The image

preprocessing module mainly includes image data normalization

and scaling operations, which are used to unify retinal OCT images

of different sizes and facilitate the training of the network. The

model training and prediction module constructs the algorithm

model and compares predictions in terms of various evaluation

metrics. This module is mainly used to train and predict models

from the unified retinal OCT images and thus to test the strengths

and weaknesses of various algorithmic models.

3.2. Image preprocessing module

In the dataset preprocessing module, the input images are

mainly deflated to widths of 299 and heights of 299 (by

bilinear interpolation) and subsequently normalized (formula 1) to

facilitate the calculation of the network.

Xnorm =
X − Xmin

Xmax − Xmin
(1)

Xmin and Xmax represent the minimum and maximum image

pixel values, respectively, and Xnorm denotes the normalized image

pixel values. The normalized image pixel values are restricted to

be between 0 and 1, which accelerates the convergence of the

neural network and ensures faster convergence when the program

is running.

3.3. Model training and prediction module

3.3.1. GAB
Given a feature map TH∗W∗C, H, W, and C represent the

dimensional information of the feature map T (height, width and

number of channels, respectively), and m, n, and k represent the

size of the feature map (height, width and number of channels,

respectively), so the average pooling results in terms of the height

and width are obtained via formula 2 and formula 3, respectively.

AvgPool_H =
1

m

m∑

i=1

Ti(W,C) (2)

AvgPool_W =
1

n

n∑

i=1

Ti(H,C) (3)

The maximum pooling height and width are shown in formula

4 and formula 5, respectively.

MaxPool_H = max(T0(W,C),T1(W,C),T2(W,C), ...,Tm(W,C))

(4)

MaxPool_W = max(T0(H,C),T1(H,C),T2(H,C), ...,Tn(H,C))

(5)

The global average pooling process conducted on the channels

and global maximum pooling are presented in formula 6 and

formula 7, respectively.

GAP =
1

m ∗ n

m∑

i=1

n∑

j=1

Ti,j(C) (6)
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FIGURE 1

Attention mechanism. GAP, global average pooling layer; GMP, global max pooling layer; Channel AvgPool and Channel MaxPool represent the

average and maximum pooling operations conducted on the channels, respectively; W AvgPool and W MaxPool represent the maximum and

average pooling operations conducted on the width, respectively; H AvgPool and H MaxPool represent the maximum and average pooling

operations conducted on the height, respectively; FC, fully connected layer; ReLU, sigmoid and H-swish are the activation functions; BN, batch

normalization; Conv2D, convolutional layer; Add, element-by-element addition; Multiply, vector multiplication; Transpose, transposition of

high-dimensional vectors; Concat, stitching according to a certain dimension.
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FIGURE 2

System architecture.

FIGURE 3

GABNet architecture.

GMP = max(T0,0(C),T0,1(C), ...,T0,n(C), ...,Tm,n(C)) (7)

Therefore, the weighted values in the height attention module,

width attention module and channel attention module are

calculated as in formula 8, formula 9, and formula 10, respectively.

H1∗W∗C
= AvgPool_H(f 1∗1(d1∗1(Concat(AvgPool_H(TH∗W∗C),

MaxPool_H(TH∗W∗C))))) (8)

WH∗1∗C
= AvgPool_W(f 1∗1(d1∗1(Concat(AvgPool_W(TH∗W∗C),

MaxPool_W(TH∗W∗C))))) (9)

C1∗1∗C
= W1(W0(GAP(RH∗W∗C)))+W1(W0(GMP(RH∗W∗C)))

(10)

where f represents the 1*1 convolution operation, batch

normalization (BN) and the fusion operation of the rectified

linear unit (ReLU) non-activation function; d represents the 1*1

convolution operation, BN and the fusion operation of the ReLU

non-activation function; W0 is the fusion operation of the fully

connected layer and the ReLU non-activation function; W1 is

the fusion operation of the fully connected layer and the sigmoid

non-activation function.

For the input feature map RH∗W∗C, the weighted output feature

map is calculated as in formula 11.

OH∗W∗C
= RH∗W∗C

∗H1∗W∗C
∗WH∗1∗C

∗ C1∗1∗C (11)

3.3.2. GABNet
In this paper, GABNet is used as a feature extraction network

after data preprocessing. The overall structure of the network

model is shown in Figure 3, and it can be divided into four

parts: a DSC module (Figure 4A), a DSC residual (DSCR) Block

A (Figure 4B), DSCR Block B (Figure 4C), and a global attention

module (GAB; Figure 1 GAB). It has been shown that the DSC

operation is effective in reducing the computational complexity

of a network while maintaining little variation in its accuracy

(Howard et al., 2019). Thus, GABNet makes extensive use of

the DSC operation. The use of residual structures can effectively

reduce the degradation of the network (He et al., 2016), so two

modules, DSCR Block A and DSCR Block B, are constructed

throughout the network. The attention mechanism is effective in

improving the classification accuracy of the network when the

number of parameters does not vary greatly, so the global attention

mechanism is followed by an attention mechanism in each residual

structure, in order to improve the effect of the network in this case.

4. Experiment

4.1. Experimental conditions

In the experimental environment of this paper, the evaluation

is conducted on an Nvidia Tesla V100 with 16 GB of memory. The
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FIGURE 4

GABNet subnetwork architecture. (A) DSC module. (B) DSC residual (DSCR) Block A. (C) DSCR Block B. DW Conv2D, deep separable convolution

layer; Conv2D, convolution layer; BN, batch normalization; ReLU, activation function; MaxPool, maximum pooling layer; Add, element-by-element

addition.

CUDA, cuDNN, Python, TensorFlow, and Keras versions are 11.6,

8.4.1, 3.8.8, 2.8.0, and 2.4.3, respectively.

4.2. Dataset

The dataset used in this paper is the UCSD retinal OCT dataset,

which contains 108,312 OCT images from 4686 patients (Kermany,

2018). These images were acquired using Spectralis OCT from

Heidelberg Engineering, Germany. The dataset consists of four

categories: CNV, DME, drusen, and normal. The sample sizes of the

four categories are 37,206, 11,349, 8,617, and 51,140, respectively.

Each category has 250 samples in the test set. The dataset was

collected from retrospective cohorts of adult patients by various

institutions, including the Shiley Eye Institute of the University of

California San Diego, the California Retinal Research Foundation,

Medical Center Ophthalmology Associates, the Shanghai First

People’s Hospital, and the Beijing Tongren Eye Center, between July

1, 2013 and March 1, 2017. More details about the dataset can be

found in the study (Kermany, 2018). Typical images and the sample

size distribution of each dataset category are shown in Figure 5.

4.3. Evaluation criteria

To perform a quantitative analysis and obtain objective

comparison results, we evaluate the diagnostic performance of

the proposed approach according to the Accuracy (Acc), Recall,

Precision, Specificity, F1, and area under the curve (AUC) metrics.

It should be noted that the aforementioned Acc, Recall, Precision,

Specificity, F1, and AUC metrics are all calculated based on

weighted averages for each corresponding class, in order to obtain

a comprehensive performance evaluation. Table 1 presents the

confusion matrix for multi-class classification of Retinal OCT

images. For each class i, the true positive (TPi), false positive

(FPi), false negative (FNi), and true negative (TNi) can be easily

obtained using the formula 12–15. The number of samples in

the class i is represented by support_i. With these four values,

we can calculate the Acc, F1 score, precision, specificity and

recall. Acc is the proportion of correctly classified samples among

all participating samples, as shown in formula 16. Recall is the

proportion of correct predictions among all positive samples, as

shown in formula 17. Precision is the proportion of correctly

classified positive examples among all divided positive examples,

as shown in formula 18. Specificity is the proportion of correctly

classified negative examples among all divided negative examples,

as shown in formula 19. F1 is an index used in statistics to measure

the accuracy of binary classification models. It takes both model

accuracy and recall into account, as shown in formula 20. The F1

score can be regarded as a harmonic average of the model accuracy

and recall, whose maximum value is 1 and minimum value is 0.

The AUC is the area under the receiver operating characteristic

(ROC) curve enclosed by the coordinate axes, and its value range

is between 0.5 and 1.

TPi = Xii (12)
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FIGURE 5

An overview of samples in dataset. (A) Representative OCT images of each category. (B) Sample size distribution of each category.

FPi =

4∑

j=1

Xji − TPi (13)

FNi =

4∑

j=1

Xij − TPi (14)

TNi =

4∑

j=1

4∑

k=1

Xjk − TPi − FPi − FNi (15)

Acc =

4∑
j=1

Xjj

4∑
j=1

4∑
k=1

Xjk

(16)

Recall =

4∑
i=1

TPi∗support_i
TPi+FNi

4∑
i=1

support_i

(17)

Precision =

4∑
i=1

TPi∗support_i
TPi+FPi

4∑
i=1

support_i

(18)

Specificity =

4∑
i=1

TNi∗support_i
TNi+FPi

4∑
i=1

support_i

(19)

F1 =
2 ∗ Precision ∗ Recall

Precision+ Recall
(20)

TABLE 1 Confusion matrix for retinal OCT classification.

Confusion matrix Predicted class

CNV DME Drusen Normal

Actual class CNV X11 X12 X13 X14

DME X21 X22 X23 X24

Drusen X31 X32 X33 X34

Normal X41 X42 X43 X44

4.4. Experimental results

To ensure objective and fair comparison among the algorithms,

we used softmax as the activation function and cross-entropy as

the loss function for all compared algorithms. We utilized adam

optimizer with an initial learning rate of 0.0001 and a batch size of

10. The model was trained for 300 epochs. Moreover, we employed

several optimization strategies, including scaling down the learning

rate to 1/10 if the validation accuracy did not improve for 5

consecutive times, and early stopping if the model did not improve

validation accuracy for 11 consecutive times.

Regarding the selection of data, we conducted experiments

using two distinct approaches. The first approach involved training

the models on the complete dataset, which will be subsequently

referred to as “complete model” throughout this paper. The second

approach consisted of training the models on a balanced subset of

the complete dataset, containing corresponding 1,000 images per

class, which will be referred to as “limited model” in the following

sections.

On the general UCSD retinal OCT dataset, this paper evaluates

the model performance in four perspectives: whether to use

balanced data, different classification algorithms, whether to use

transfer learning, and whether to use attention mechanisms. Our
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TABLE 2 Comparative evaluation of various algorithms on di�erent datasets.

Dataset Classification
algorithm

Transfer
learning

Attention
mechanism

Acc Recall Specificity F1 AUC

Limited model Xception No No 0.94 0.94 0.98 0.9398 0.9937

Yes No 0.976 0.976 0.992 0.9761 0.9988

Yes SE 0.978 0.978 0.9927 0.9779 0.9988

Yes CBAM 0.978 0.978 0.9927 0.978 0.9979

Yes CoorDatt 0.985 0.985 0.995 0.985 0.9991

Yes GAB 0.99 0.99 0.9967 0.99 0.9994

EfficientNetV2 No No 0.838 0.838 0.946 0.8335 0.9649

Yes No 0.971 0.971 0.9903 0.971 0.9985

Yes SE 0.971 0.971 0.9903 0.971 0.9984

Yes CBAM 0.972 0.972 0.9907 0.972 0.9986

Yes CoorDatt 0.974 0.974 0.9913 0.9739 0.9975

Yes GAB 0.976 0.976 0.992 0.976 0.9958

GABNet - No 0.733 0.733 0.9113 0.7208 0.9084

- GAB 0.954 0.954 0.9846 0.954 0.998

Complete

model

Xception No No 0.95 0.95 0.9833 0.9501 0.9961

Yes No 0.977 0.977 0.9923 0.977 0.9992

Yes SE 0.978 0.978 0.9927 0.978 0.9985

Yes CBAM 0.961 0.961 0.987 0.9612 0.9985

Yes CoorDatt 0.971 0.971 0.9903 0.9709 0.9985

Yes GAB 0.98 0.98 0.9933 0.98 0.9992

EfficientNetV2 No No 0.928 0.928 0.976 0.9273 0.9929

Yes No 0.968 0.968 0.9893 0.9681 0.9977

Yes SE 0.971 0.971 0.9903 0.9711 0.9986

Yes CBAM 0.973 0.973 0.991 0.973 0.9976

Yes CoorDatt 0.966 0.966 0.9887 0.966 0.9979

Yes GAB 0.978 0.978 0.9927 0.9781 0.9983

GABNet - No 0.965 0.965 0.9883 0.9648 0.991

- GAB 0.965 0.965 0.9883 0.965 0.9971

Value in bold means the best of the same class.

“-” Means that the algorithm does not have this feature or property.

proposed GAB attention mechanism is tested against different

attention mechanisms, such as SE, the CBAM and CoorDatt.

The proposed GABNet is compared with the Xception and

EfficientNetV2B3 algorithms. The results of the test comparisons

are shown in Table 2. Compared with the general attention

mechanisms proposed in recent years, such as SE, CBAM, and

CoorDatt, the GAB attention mechanism is improved to some

extent. The GABNet classification algorithm has demonstrated

superior performance over Xception and EfficientNetV2B3,

without the use of transfer learning, in terms of parameter

efficiency and various classification metrics. This confirms the

effectiveness of the GAB attention mechanism and the GABNet

classification algorithm.

4.4.1. Validity of the GAB and GABNet
In this paper, Xception and EfficientNetV2B3 are regarded

as the basic classification modules, in which the input height

and width of the Xception classification framework are 299.

To achieve the best classification effect for EfficientNetV2B3

(Tan and Le, 2021), the height and width of the input image

provided to this classification model are scaled to 300. To

verify the effectiveness of the GAB attention mechanism, we

test whether the GAB has any influence on the Xception and

EfficientNetV2B3 classification algorithms based on the same

dataset and the same algorithm. Under the limited model, the

effects of Xception and EfficientNetV2B3 integrated with GAB

module is 1.4 and 0.5% higher than those obtained by models
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FIGURE 6

Performance comparison of classification algorithms with and without GAB on di�erent datasets. (A) E�ect of GAB on classification accuracy across

diverse datasets and algorithms. (B) E�ect of GAB on ROC of di�erent algorithms in the limit model dataset. (C) E�ect of GAB on ROC of di�erent

algorithms in the complete model dataset. Xception_No_GAB, Xception_Yes_GAB represent Xception without GAB and with GAB respectively;

E�cientNetV2_No_GAB, E�cientNetV2_Yes_GAB represent E�cientNetV2 without GAB and with GAB respectively.

Frontiers inNeuroscience 10 frontiersin.org

https://doi.org/10.3389/fnins.2023.1143422
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Huang et al. 10.3389/fnins.2023.1143422

FIGURE 7

The impact of attention mechanisms on classification performance: a comparative study across multiple algorithms and datasets. (A) E�ect of

attention mechanisms on classification accuracy across diverse datasets and algorithms. (B) E�ect of attention mechanisms on ROC of di�erent

algorithms in the limit model dataset. (C) E�ect of attention mechanisms on ROC of di�erent algorithms in the complete model dataset.

Xception_SE, Xception_CBAM, Xception_CoorDatt and Xception_GAB represent the fusion of Xception with four di�erent attention mechanisms, SE,

CBAM, CoorDatt and GAB, respectively; E�cientNetV2_SE, E�cientNetV2_CBAM, E�cientNetV2_CoorDatt, and E�cientNetV2_GAB represent the

fusion of E�cientNetV2 with four di�erent attention mechanisms, SE, CBAM, CoorDatt and GAB, respectively.
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TABLE 3 Evaluation of di�erent algorithms on retinal OCT classification.

Algorithm Acc Recall Specificity F1 AUC Parameters
(M)

Test time

ResNet50a(He et al.,

2016)

0.941 0.941 0.9803 0.9411 0.9923 23.595 4.81 s± 315

ms

InceptionV3a(Szegedy

et al., 2016)

0.96 0.96 0.9867 0.9599 0.9947 21.811 4.78 s ± 277

ms

Xceptiona(Chollet, 2017) 0.95 0.95 0.9833 0.9501 0.9961 20.87 4.81 s± 285

ms

EfficientNetV2B3a(Tan

and Le, 2021)

0.928 0.928 0.976 0.9273 0.9929 12.937 5.39 s± 204

ms

Huanga(Huang et al.,

2019)

0.884 0.846 N/A N/A N/A N/A N/A

GABNeta 0.965 0.965 0.9883 0.965 0.9969 9.361 7.26 s± 353

ms

FN-F1-OCTb(Ai et al.,

2022)

0.985 0.985 0.995 0.985 0.99 99.717 18.1 s± 831

ms

FN-Weight-OCTb(Ai

et al., 2022)

0.984 0.984 0.995 0.984 0.99 99.717 15.6 s± 419

ms

FN-Auto-OCTb(Ai et al.,

2022)

0.987 0.987 0.996 0.987 0.991 99.774 15.8 s± 451

ms

Kermanyb(Kermany

et al., 2018)

0.961 0.961 0.987 0.961 0.99 N/A N/A

Hwangb(Hwang et al.,

2019)

0.9693 N/A N/A N/A N/A N/A N/A

Sinhab(Sinha et al., 2023) 0.944 0.944 0.9815 0.9448 N/A N/A N/A

EfficientNetV2B3+GABb 0.978 0.978 0.9927 0.9781 0.9983 18.281 5.53 s± 94.5

ms

Xception+GABb
0.99 0.99 0.9967 0.99 0.9994 30.354 4.88 s ± 240

ms

aNon-transfer learning methods.
bTransfer learning methods.

Value in bold means the best of the same class.

“N/A” Means that the metric was not displayed in the comparison article.

without the GAB module, respectively. Under the complete model,

Xception and EfficientNetV2B3 with the GAB module achieve 0.3

and 1% improvements, respectively, over the models without the

GAB module.

The GAB attentionmechanism is composed of DSC operations,

so it can be used as a general module and can be seamlessly

connected to any network feature map. The evaluation results

obtained by different algorithms on different datasets (lines 2, 6,

8, 12, 16, 20, 22, and 26 in Table 2 and Figure 6) are improved to a

certain extent, thus proving the effectiveness of the GAB algorithm.

To verify the efficiency of the GAB attention mechanism, we

conduct tests on the same dataset with the same algorithm, as

shown in rows 3–6, 9–12, 17–20, and 23–26 in Table 2 and Figure 7,

where the sample size of each dataset category is balanced 1,000

for the limited model dataset. In comparison of different attention

modules, such as SE, CBAM, CoorDatt and GAB, the Acc, F1 value

and AUC results show that they all provide certain improvements

over models without any attention mechanisms. Notably, the GAB

attention module proposed in this paper provides improvements

of up to 1.4%. Under EfficientNetV2, in the same comparison, the

GAB module is 0.5% better than the original algorithm. Compared

to SE, the CBAM and CoorDatt, the GAB module can effectively

learn the main differences between the categories when the sample

size of the dataset is small, which can maximally improve the

classification effect of the model. In parallel, for the complete model

dataset, the dataset is the complete dataset provided by UCSD with

a large sample size but significant imbalances between categories.

The Xception algorithm in the complete model with four attention

mechanisms is reduced compared to that in the limited model. The

unbalanced training dataset of the model has an impact, resulting

in the model having inconsistent recognition abilities for various

categories and being biased toward categories with large sample

sizes. The reason for that may be the Xception model has some

limitations regarding its prediction ability for cases with small

sample sizes. EfficientNetV2B3 produces little difference between

the prediction results obtained on the two different datasets,

indicating that it has little influence on the dataset differences and

has some resistance to interference.

Similarly, to verify the effectiveness of the GABNet algorithm,

comparison experiments are conducted on different classification

algorithms with same datasets. For this paper, the comparison

models Xception and EfficientNetV2B3 were chosen. These
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FIGURE 8

Comparing classification results of di�erent algorithms on diverse datasets. (A) E�ect of di�erent algorithms on classification accuracy on di�erent

datasets. (B) E�ect of di�erent algorithms on ROC obtained on limit model dataset. (C) E�ect of di�erent algorithms on ROC obtained on complete

model dataset. GABNet_No_GAB, GABNet_Yes_GAB represent GABNet without GAB and with GAB respectively.
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TABLE 4 Evaluation of retinal OCT classification algorithms on external dataset.

Classification algorithm Acc Recall Specificity F1 AUC

GABNet 0.8047 0.8047 0.9332 0.7988 0.9654

EfficientNetV2+GAB 0.8594 0.8594 0.9531 0.8556 0.9727

Xception+GAB 0.9141 0.9141 0.9723 0.915 0.9914

Value in bold means the best of the same class.

TABLE 5 Evaluation of DR classification algorithms on fundus photograph dataset.

Classification
algorithm

Transfer
learning

Attention
mechanism

Acc Recall Specificity F1 AUC

VGG19 (Wu and Hu, 2019) - - 0.51 N/A N/A N/A N/A

ResNet50 (Wu and Hu, 2019) - - 0.49 N/A N/A N/A N/A

Inception V3 (Wu and Hu,

2019)

- - 0.61 N/A N/A N/A N/A

DR-IIXRN (Ai et al., 2021) - - 0.793 0.7933 0.8778 0.7602 0.7602

Xception NO NO 0.7479 0.7479 0.8307 0.6808 0.7307

YES NO 0.7901 0.7901 0.8767 0.7539 0.8093

YES YES 0.7939 0.7939 0.8711 0.7487 0.7942

EfficientNetV2B3 NO NO 0.7358 0.7358 0.8271 0.6628 0.7127

YES NO 0.797 0.797 0.8776 0.7555 0.8025

YES YES 0.804 0.804 0.8831 0.7653 0.8109

GABNet - NO 0.6877 0.6876 0.807 0.6242 0.5987

- YES 0.7607 0.7607 0.8398 0.6954 0.743

Value in bold means the best of the same class.

“N/A” Means that the metric was not displayed in the comparison article.

“-” Means that the algorithm does not have this feature or property.

models used their respective network architectures without

utilizing “ImageNet”-based initialization of the weight parameters.

Instead, they were initialized with random values for their

weight parameters. The number of parameters required by the

proposed GABNet in this paper is significantly lower, as can be

observed from the numbers of network parameters presented in

Table 3. Specifically, the GABNet requires 0.44 and 0.72 times

fewer parameters compared to Xception and EfficientNetV2B3,

respectively, indicating a substantial reduction in the number of

parameters. From a dataset perspective (Figure 8; lines 1, 7, 13–

15, 21, and 27–28 in Table 2), if all three comparison algorithms

use random initialization parameters, the results obtained with

the complete model are much better than those of the limited

model, where random network parameter initialization requires

more image data to be fitted for optimization purposes. Under

the limited model, GABNet improves by 1.4% over Xception

and by 11.6% over EfficientNetV2B3. The small sample size in

the training dataset has a large impact on the nonmigratory

learning abilities of Xception and EfficientNetV2B3, and their

training processes have difficulty in reaching saturation, so their

prediction effects drop sharply. In contrast, GABNet still maintains

a high prediction accuracy in this situation. With a larger

sample size of the complete model dataset, all four algorithm

models have been improved, especially GABNet without the

attention module, which has increased its accuracy by 23.2%.

The GABNet model with the attention module achieves an

improved prediction effect with the completed model over that

obtained with the limited model, but the improvement is not

very significant, indicating that GABNet is able to learn the main

differences between the categories even when the sample size is

small.

To conduct an ablation experiment on the GABNet network,

the enhancement effect of the attention module in GABNet is

verified. For the test effect in Figure 8, GABNet improves by 22.1%

on the basis of the limited model. GABNet can effectively maintain

the stability of the classification index when the sample size of the

given dataset is not large. In view of the difficulty in obtaining

medical data at present, GABNet has application potential in

certain scenarios.

The UCSD retinal OCT dataset is by far the largest open source

dataset in terms of data volume for retinal classification, and thus

a large number of researchers have conducted research tests on

this dataset. To compare the effectiveness of the GAB and GABNet

techniques proposed in this paper, we collect and download the

network models that have been tested on the UCSD retinal OCT

dataset over the past five years, as shown in Table 3. To ensure

fairness in comparison, we conducted evaluation synthetically

on Complete model and Limited model datasets using NVIDIA

Geforce RTX 3060Ti with 8GB memory and a batch size of 10.

We selected the model with higher accuracy for further analysis.
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FIGURE 9

E�ects of di�erent algorithms on the classification results obtained for retinal fundus images. Xception_N_N, Xception_Y_N, Xception_Y_Y

respectively represent Xception as the base classifier, no transfer learning and no GAB attention mechanism; Using transfer learning when not using

GAB attention mechanism; Using transfer learning and use the GAB attention mechanism. E�cientNetV2_N_N, E�cientNetV2_Y_N,

E�cientNetV2_Y_Y respectively represent E�cientNetV2 as the base classifier, no transfer learning and no GAB attention mechanism; Using transfer

learning when not using GAB attention mechanism; Using transfer learning and use the GAB attention mechanism. GABNet_N,GABNet_Y represent

GABNET without attention mechanism and with attention mechanism respectively.

As shown in Table 3, “Parameters (M)” represents the total number

of parameters in the model, and “Test Time” represents the mean

± sd time obtained by running 5 tests per round for 10 rounds on

the test dataset.

We compared non-transfer learning algorithms with transfer

learning algorithms. In the comparison of non-transfer learning

algorithms (Table 3, rows 1-6), the GABNet algorithm had a certain

disadvantage in testing time due to its wider branch compared to

other algorithms. However, with the improvement of computing

performance, we believe that this gap can be further reduced.

Specifically, in terms of classification performance, GABNet

showed extremely strong feature extraction and classification

capabilities in the comparison of non-transfer learning algorithms.

In the comparison of transfer learning algorithms (Table 3, rows

7-14), the accuracy of Xception and EfficientNetV2B3 algorithms

with GAB attention mechanism was greatly improved. The

Ai et al. (2022) method used ensemble learning with strong

feature extraction, but the Xception+GAB method proposed in

this paper significantly reduced the number of required parameters

while improving the evaluation metrics, indicating the improved

effectiveness of the GAB attention mechanism compared to the Ai

et al. (2022) method. Compared to the transfer learning algorithms

proposed in the literature, the accuracy of GABNet was slightly

lower, which is also the focus of future work in this paper. The

algorithm will be trained on the ImageNet dataset to obtain

a network with strong feature extraction capabilities, and then

transfer learning will be performed on this dataset.

4.4.2. External validation dataset extension
This study retrospectively collected 256 retinal OCT images

from Beijing Chaoyang Hospital, Capital Medical University.
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FIGURE 10

Model visualization maps of Choroidal Neovascularization (CNV), Diabetic Macular Edema (DME), Drusen and Normal by di�erent attention

mechanisms. The highlighted areas in red spectrum are considered as important in making its diagnosis.

The dataset comprises four categories: CNV, DME, Drusen, and

Normal, with sample sizes of 59, 94, 20, and 83, respectively.

The Medical Ethics Review Board of Beijing Chaoyang Hospital

approved the retrospective study. We directly used the trained

algorithm model to predict all image data. Similarly, we employed

the preprocessingmethod used for the internal testing set to process

the external validation dataset. The evaluation metrics for each

category in the external validation dataset are shown in Table 4.

As the OCT images used for training the network models were

generated by a “Spectralis OCT” device, while the external dataset

images were acquired from a “Cirrus HD” device, there were certain

discrepancies observed in the OCT image characteristics produced

by the two devices. Specifically, the Spectralis OCT equipment is

known to produce images with higher clarity compared to the

Cirrus HD-OCT, which might have resulted in a decline in the

evaluation metrics during model testing. This is undoubtedly one

of the future research directions that we plan to pursue. We aim

to evaluate the generalization ability of our proposed algorithms by

utilizing other locally available high-resolution image databases.

4.4.3. Extension to other types of datasets
To verify the performance of GAB and GABNet on

other application scenario datasets, we selected a DR dataset

for validation (Kaggle: https://www.kaggle.com/c/diabetic-

retinopathy-detection/data). The dataset is taken from the Diabetic

Retinopathy Detection Competition, a data modeling and data

analysis competition platform. A total of 35,126 image samples

are available and categorized into five categories: normal, mild,

moderate, severe and proliferative DR. The sample sizes for

each category are 25810, 2443, 5292, 873 and 708, respectively.

Due to the severe imbalance in the dataset, this paper performs

preprocessing using the data preprocessing scheme mentioned by

(Ai et al., 2021). On this dataset, we use Xception, EfficientNetV2B3

and GABNet for testing, the results of which are shown in Table 5

and Figure 9.

First, it can be seen from Figure 9 that transfer learning can

greatly improve the classification ability of the associated algorithm.

The accuracy of Xception and EfficientNetV2B3 are improved by

4.2 and 6.1%, respectively. This demonstrates that the efficacy

of feature extraction by each network is significantly enhanced

through the “ImageNet” pre-training approach, which involves

utilizing large datasets and ensuring a balance across various

categories. Using the GAB attention mechanism, the accuracy of

Xception and EfficientNetV2B3 are improved by 0.4 and 0.7%,

respectively, which shows that the attention mechanism proposed

in this paper is effective and efficient. On the other hand, GABNet

can also improve the classification accuracy by 3% over that of

Xception and EfficientNetV2B3 without transfer learning. This

shows that GABNet has certain advantages not only in retinal OCT

disease classification but also in DR grading detection by fundus

photograph, indicating a good generalization ability.

As shown in Table 5, it is evident that the Xception+GAB,

EfficientNetV2B3+GAB, and GABNet approaches presented in this

study yield enhanced accuracy compared to the methods proposed

by Wu and Hu (2019) and Ai et al. (2021). While the fusion
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network utilized in Ai et al. (2021) demonstrated robust feature

extraction, its parameter count was relatively high. In this paper,

EfficientNetV2B3 and GABNet achieve improved classification

correctness rates while reducing the number of required network

parameters, proving that the GAB attention mechanism has a

strong feature-weighted optimization function.

4.4.4. Model visualization and interpretation
To compare the differences of contributing regions between

the proposed GAB attention mechanism and other attention

mechanisms, a heatmap is created for each image using a

visualization method, i.e., gradient-weighted class activation

mapping (Grad-CAM). In the heatmaps (Figure 10), the most

relevant category discriminating regions are highlighted in red.

The fundamental purpose of heatmap generation is to construct

an image that reveal the subregions of the original image to

identify areas contributing to the algorithm’s determination of

the diagnosis. In this study, the Xception classifier is selected as

the underlying model, and one image per category is arbitrarily

chosen for feature visualization from the No AttentionMechanism,

SE, CBAM, CoorDatt, and GAB methods.The contributing areas

depicted in the heatmaps reveal that the GAB method highlights

smaller regions compared to the Original, SE, CBAM, and

CoorDatt methods, focusing predominantly on the lesion areas

while disregarding other irrelevant regions. This substantiates the

efficacy of the GAB attentionmechanism. The locations highlighted

by the GAB heatmap are partially consistent with human experts’

experience which means good interpretation of this model.

5. Conclusion

This study presents a novel and effective Global Attention Block

(GAB) for feedforward CNNs. The GAB is a versatile module that

can be easily integrated into any CNN to improve its classification

performance. Compared to commonly used attention mechanisms

in current research, the GAB is shown to better focus on lesion

locations in retinal OCT images, leading to improved classification

results. Based on the GAB, a lightweight classification network

model called GABNet is proposed, which demonstrates superior

performance while also having a smaller number of parameters.

Our future work includes testing the proposed algorithm on a larger

set of locally sourced clinical image databases and optimizing it

accordingly to improve the performance. Additionally, the use of a

larger image classification database, such as ImageNet, is planned

for training, and the transfer learning of the obtained GABNet

classification model to more application scenarios will be expected

to verify the algorithm’s robustness.
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