12,248 research outputs found
Floating-disk parylene microvalve for self-regulating biomedical flow controls
A novel self-regulating parylene micro valve is presented in this paper with potential applications for biomedical flow controls. Featuring a free-floating bendable valve disk and two-level valve seat, this surface-micromachined polymeric valve accomplishes miniature pressure/flow rate regulation in a band-pass profile stand-alone without the need of power sources or active actuation. Experimental data of underwater testing results have successfully demonstrated that the microfabricated in-channel valve can regulate water flow at 0-80 mmHg and 0-10 ”L/min pressure/flow rate level, which is perfectly suitable for biomedical and lab-on-a-chip applications. For example, such biocompatible microvalve can be incorporated in ocular implants for control of eye fluid drainage to fulfill intraocular pressure (IOP) regulation in glaucoma patients
Aeroacoustic and aerodynamic performances of an aerofoil subjected to sinusoidal leading edges
This paper presents the preliminary results on the aeroacoustic and aerodynamic performances of a NACA65-(12)10 aerofoil subjected to 12 sinusoidal leading edges. The serration patterns of these leading edges are formed by cutting into the main body of the aerofoil, instead of extending the leading edges. Any of the leading edges, when attached to the main body of the aerofoil, will always result in the same overall chord length. The experiment was mainly performed in an aeroacoustic wind tunnel facility, although a separate aerodynamic type wind tunnel was also used for the force measurements. These sinusoidal leading edges were investigated for their effectiveness in suppressing the laminar instability tonal noise (trailing edge self-noise) and turbulenceâleading edge interaction noise. The largest reduction in aerofoil noise tends to associate with the sinusoidal leading edge of the largest amplitude, and smallest wavelength. However, noticeable noise increase at high frequency is also observed for this combination of serration. In terms of the aerodynamic performance, increasing the serration wavelength tends to improve the stall angles, but the lift coefficient at the pre-stall regime is generally lower than that produced by the baseline leading edge. For a sinusoidal leading edge with large serration amplitude, the effect of the reduction in âlift-generatingâ surface is manifested in the significant reduction of the lift coefficients and lift curve slope. The sinusoidal leading edge that produces the best performance in the post-stall regime belongs to the largest wavelength and smallest amplitude, where the lift coefficients are shown to be better than the baseline leading edge. In conclusion, large amplitude and small wavelength is beneficial for noise reduction, whilst to maintain the aerodynamic lift a small amplitude and large wavelength is preferred
Food Safety Knowledge and Practice Among Community in Sg. Pelek, Sepang, Selangor Darul Ehsan
Food safety is a basic requirement of food quality. It is an increasingly important public health issue to prevent and control food borne illnesses. A cross-sectional study was designed to determine level of knowledge and practice on food safety, to determine the association between knowledge and practice, and also to identify the association between socio-demographic factors and practice score of the population studied. This study was conducted among adult population in Taman Bahagia, Sungai Pelek, Sepang, Selangor Darul Ehsan. Data were collected using an interviewed structured questionnaire. A stratified random sampling was performed to obtain houses, followed by simple random sampling to select sample in the house. A total of 115 data sets were analysed using Statistical Package for Social Sciences (SPSS) version 20.0. Analysis showed that 35% of respondents have poor level of knowledge on food safety, whereas 27% of the respondents have poor level of practices on food safety. Multiple linear regression revealed that there are a significant association between education level (p<0.001), Adj b=2.57 (95% CI: 1.15, 3.99) and gender (p=0.048), Adj b=1.15 (95% CI: 0.01, 2.29) with practice score on food safety. Therefore, health promotion and education on the importance of practicing food safety at home should be focused to prevent further unwanted health effects
Microfabricated Implantable Parylene-Based Wireless Passive Intraocular Pressure Sensors
This paper presents an implantable parylene-based wireless pressure sensor for biomedical pressure sensing applications specifically designed for continuous intraocular pressure (IOP) monitoring in glaucoma patients. It has an electrical LC tank resonant circuit formed by an integrated capacitor and an inductor coil to facilitate passive wireless sensing using an external interrogating coil connected to a readout unit. Two surface-micromachined sensor designs incorporating variable capacitor and variable capacitor/inductor resonant circuits have been implemented to realize the pressure-sensitive components. The sensor is monolithically microfabricated by exploiting parylene as a biocompatible structural material in a suitable form factor for minimally invasive intraocular implantation. Pressure responses of the microsensor have been characterized to demonstrate its high pressure sensitivity (> 7000 ppm/mmHg) in both sensor designs, which confirms the feasibility of pressure sensing with smaller than 1 mmHg of resolution for practical biomedical applications. A six-month animal study verifies the in vivo bioefficacy and biostability of the implant in the intraocular environment with no surgical or postoperative complications. Preliminary ex vivo experimental results verify the IOP sensing feasibility of such device. This sensor will ultimately be implanted at the pars plana or on the iris of the eye to fulfill continuous, convenient, direct, and faithful IOP monitoring
Implantable parylene-based wireless intraocular pressure sensor
This paper presents a novel implantable, wireless,
passive pressure sensor for ophthalmic applications. Two
sensor designs incorporating surface-micromachined
variable capacitor and variable capacitor/inductor are
implemented to realize the pressure sensitive components.
The sensor is monolithically microfabricated using parylene
as a biocompatible structural material in a suitable form
factor for increased ease of intraocular implantation.
Pressure responses of the microsensor are characterized
on-chip to demonstrate its high pressure sensitivity (> 7000
ppm/mmHg) with mmHg level resolution. An in vivo animal
study verifies the biostability of the sensor implant in the
intraocular environment after more than 150 days. This
sensor will ultimately be implanted at the pars plana or iris of
the eye to fulfill continuous intraocular pressure (IOP)
monitoring in glaucoma patients
Implantable Unpowered Parylene MEMS Intraocular Pressure Sensor
This paper presents the first implantable, unpowered, parylene-based micro-electro-mechanical-systems (MEMS) pressure sensor for intraocular pressure (IOP) sensing. From in situ mechanical deformation of the compliant structures, this sensor registers pressure variations without power consumption/transduction. Micromachined high-aspect-ratio thin-walled tubes in different geometric layouts are exploited to obtain a high-sensitivity pressure response. An integrated packaging method has been successfully developed to realize suture-less implantation of the device. In vitro testing results have demonstrated that the IOP sensor can achieve 0.67 degree/mmHg angular sensitivity with a spiral-tube design, 3.43 ”m/mmHg lateral sensitivity with a long-armed-tube design, and 0.38 ”m/mmHg longitudinal sensitivity with a serpentine-tube design. This IOP sensor is designed to be implanted in the anterior chamber of the eye and anchored directly on the iris so that, under incident visible light, the pressure response of the implant can be directly observed from outside the eye, which enables faithful and unpowered IOP monitoring in glaucoma patient
QCD Effects in High Energy Processes
In this talk, some important QCD effects in Higgs physics, supersymmetry and
top physics, as well as the factorization and resummation techniques in QCD are
reviewed.Comment: LaTeX, 13 pages, uses ws-ijmpa.cls. Based on an invited talk at the
International Conference on QCD and Hadronic Physics, Beijing, China, June
16--20, 2005. Minor change
Superconductivity and Magnetism in REFeAsO1-xFx (RE=Rare Earth Elements)
Fluoride-doped iron-based oxypnictides containing rare-earth gadolinium
(GdFeAsO0.8F0.2) and co-doping with yttrium (Gd0.8Y0.2FeAsO0.8F0.2) have been
prepared via conventional solid state reaction at ambient pressure. The
non-yttrium substituted oxypnictide show superconducting transition as high as
43.9 K from temperature dependent resistance measurements with the Meissner
effect observed at a lower temperature of 40.8 K from temperature dependent
magnetization measurements. By replacing a small amount of gadolinium with
yttrium Tc was observed to be lowered by 10 K which might be caused by a change
in the electronic or magnetic structures since the crystal structure was not
altered.Comment: 4 pages, 4 figures, Journal of Physics: Conference Series
(Proceedings in the LT25 Low Temperature Physics Conference) Submitte
- âŠ