6 research outputs found

    Differential expression of microRNAs in plasma of patients with colorectal cancer: A potential marker for colorectal cancer screening

    Get PDF
    Objective: MicroRNAs (miRNAs) have been shown to offer great potential in the diagnosis of cancer. We investigated whether plasma miRNAs could discriminate between patients with and without colorectal cancer (CRC). Methods: This study was divided into three phases: (1) marker discovery using real-time PCR-based miRNA profiling on plasma, corresponding cancerous and adjacent non-cancerous colonic tissues of five patients with CRC, along with plasma from five healthy individuals as controls; (2) marker selection and validation by real-time quantitative RT-PCR on a small set of plasma; and (3) independent validation on a large set of plasma from 90 patients with CRC, 20 patients with gastric cancer, 20 patients with inflammatory bowel disease (IBD) and 50 healthy controls. Results: Of the panel of 95 miRNAs analysed, five were upregulated both in plasma and tissue samples. All the five miRNAs were validated on the plasma of 25 patients with CRC and 20 healthy controls. Both miR-17-3p and miR-92 were significantly elevated in the patients with CRC (p<0.0005). The plasma levels of these markers were significantly reduced after surgery in 10 patients with CRC (p<0.05). Further validation with an independent set of plasma samples (n=180) indicated that miR-92 differentiates CRC from gastric cancer, IBD and normal subjects. This marker yielded a receiver operating characteristic curve area of 88.5%. At a cut-off of 240 (relative expression in comparison to RNU6B snRNA), the sensitivity was 89% and the specificity was 70% in discriminating CRC from control subjects. Conclusion: MiR-92 is significantly elevated in plasma of patients with CRC and can be a potential non-invasive molecular marker for CRC screening.published_or_final_versio

    RhoGTPase Regulators Orchestrate Distinct Stages of Synaptic Development

    Get PDF
    Small RhoGTPases regulate changes in post-synaptic spine morphology and density that support learning and memory. They are also major targets of synaptic disorders, including Autism. Here we sought to determine whether upstream RhoGTPase regulators, including GEFs, GAPs, and GDIs, sculpt specific stages of synaptic development. The majority of examined molecules uniquely regulate either early spine precursor formation or later matura- tion. Specifically, an activator of actin polymerization, the Rac1 GEF β-PIX, drives spine pre- cursor formation, whereas both FRABIN, a Cdc42 GEF, and OLIGOPHRENIN-1, a RhoA GAP, regulate spine precursor elongation. However, in later development, a novel Rac1 GAP, ARHGAP23, and RhoGDIs inactivate actomyosin dynamics to stabilize mature synap- ses. Our observations demonstrate that specific combinations of RhoGTPase regulatory pro- teins temporally balance RhoGTPase activity during post-synaptic spine development

    NF-κB targets miR-16 and miR-21 in gastric cancer: Involvement of prostaglandin E receptors

    No full text
    Cigarette smoke is one of the risk factors for gastric cancer and nicotine has been reported to promote tumor growth. Deregulation of microRNA (miRNA) and cyclooxygenase-2 (COX-2) expressions are hallmarks of many cancers including gastric cancer. Here, we used an miRNA array platform covering a panel of 95 human miRNAs to examine the expression profile in nicotine-treated gastric cancer cells. We found that miR-16 and miR-21 were upregulated upon nicotine stimulation, transfection with anti-miR-16 or anti-miR-21 significantly abrogated cell proliferation. In contrast, ectopic miR-16 or miR-21 expression exhibited a similar stimulatory effect on cell proliferation as nicotine. Nicotine-mediated IkappaBα degradation and nuclear factor-kappa B (NF-κB) translocation dose-dependently. Knockdown of NF-κB by short interfering RNA (siRNA) or specific inhibitor (Bay-11-7085) markedly suppressed nicotine-induced cell proliferation and upregulation of miR-16 and miR-21. Interestingly, NF-κB-binding sites were located in both miR-16 and miR-21 gene transcriptional elements and we showed that nicotine enhanced the binding of NF-κB to the promoters of miR-16 and miR-21. Furthermore, activation of COX-2/prostaglandin E 2 (PGE 2) signaling in response to nicotine was mediated by the action of prostaglandin E receptors (EP2 and EP4). EP2 or EP4 siRNA or antagonists impaired the nicotine-mediated NF-κB activity, upregulation of miR-16 and miR-21 and cell proliferation. Taken together, these results suggest that miR-16 and miR-21 are directly regulated by the transcription factor NF-κB and yet nicotine-promoted cell proliferation is mediated via EP2/4 receptors. Perhaps this study may shed light on the development of anticancer drugs to improve the chemosensitivity in smokers. © The Author 2010. Published by Oxford University Press. All rights reserved.link_to_subscribed_fulltex

    Characterization of the gene structure, functional significance, and clinical application of RNF180, a novel gene in gastric cancer

    No full text
    Background: By using genome-wide methylation screening, the authors identified ring finger protein 180 (RNF180) as preferentially methylated in cancer. This study was undertaken to clarify its structure and functional role in gastric cancer. Methods: The transcription start site and core functional promoter region of RNF180 were revealed by 5â rapid amplification of cDNA ends and luciferase activity assays. Promoter methylation was detected by combined bisulfite restriction analysis and bisulfite genomic sequencing. Cell growth was detected by colony formation assay, apoptosis by annexin V assay, and RNF180 target genes by cDNA microarray. Results: The authors revealed the transcription start site of RNF180 gene and identified the functional core promoter region (-202/+372) in the CpG island, which could be silenced by in vitro methylation assay. RNF180 was silenced in 6 of 7 gastric cancer cell lines and significantly down-regulated in primary gastric cancers compared with adjacent normal tissues (P =.001). Loss of gene expression was associated with promoter methylation. Re-expression of RNF180 suppressed cell growth (P <.001) and induced apoptosis (P <.05), which were mediated by up-regulating the antiproliferation regulators MTSS1 and CDKN2A and the proapoptotic mediator TIMP3. Promoter methylation of RNF180 was detected in 76% (150 of 198) of primary gastric cancers and 55% (11 of 20) of intestinal metaplasia, but in none of 23 normal gastric tissues. Methylated RNF180 DNA was detected in the plasma of 56% of gastric cancer patients, but not in healthy controls (P =.003). Patients with low or loss of RNF180 expression had significantly poorer overall survival. Conclusions: RNF180 is a novel potential tumor suppressor in gastric carcinogenesis and has potential clinical utility as a biomarker for gastric cancer patients. © 2011 American Cancer Society.link_to_subscribed_fulltex

    Transgenic cyclooxygenase-2 expression and high salt enhanced susceptibility to chemical-induced gastric cancer development in mice

    No full text
    Cyclooxoygenase (COX)-2 overexpression is involved in gastric carcinogenesis. While high-salt intake is a known risk factor for gastric cancer development, we determined the effects of high salt on gastric chemical carcinogenesis in COX-2 transgenic (TG) mice. COX-2 TG mice were developed in C57/BL6 strain using the full-length human cox-2 complementary DNA construct. Six-week-old COX-2 TG and wild-type (WT) littermates were randomly allocated to receive alternate week of N-methyl-N-nitrosourea (MNU, 240 p.p.m.) in drinking water or control for 10 weeks. Two groups of mice were further treated with 10% NaCl during the initial 10 weeks. All mice were killed at the end of week 50. Both forced COX-2 overexpression and high-salt intake significantly increased the frequency of gastric cancer development in mice as compared with WT littermates treated with MNU alone. However, no additive effect was observed on the combination of high salt and COX-2 expression. We further showed that MNU and high-salt treatment increased chronic inflammatory infiltrates and induced prostaglandin E2 (PGE2) production in the non-cancerous stomach. Whereas high-salt treatment markedly increased the expression of inflammatory cytokines (tumor necrosis factor-α, interferon-γ, interleukin (IL)-1β and IL-6) in the gastric mucosa, COX-2 overexpression significantly altered the cell kinetics in the MNU-induced gastric cancer model. In conclusion, both high salt and COX-2 overexpression promote chemical-induced gastric carcinogenesis, possibly related to chronic inflammation, induction of PGE2, disruption of cell kinetics and induction of inflammatory cytokines. © The Author 2008. Published by Oxford University Press. All rights reserved.link_to_subscribed_fulltex
    corecore