51 research outputs found

    Flow Injection Chemiluminescent Immunoassay for Carcinoembryonic Antigen Using Boronic Immunoaffinity Column

    Get PDF
    A flow injection chemiluminescence immunoassay for rapid and sensitive detection of carcinoembryonic antigen (CEA) by using a phenylboronic acid-based immunoaffinity column as a glycoprotein collector was proposed in this paper. The column was prepared by coupling of 3-aminophenylboronic acid on the glass beads through a γ-glycidoxypropyltrimethoxysilane (GPMS) linkage. Based on an indirect competitive immunoreaction, the mixture of CEA sample and enzyme conjugated CEA antibody (HRP-anti-CEA) was incubated in advance, followed by direct injection to the column to capture free HRP-labeled CEA antibody in the column. The trapped HRP-labeled antibody was detected by flow inject chemiluminescence in the presence of luminol and hydrogen peroxide. The decreased chemiluminescent signal was proportional to the concentration of CEA in the range of 3.0–30.0 ng/mL with a correlation coefficient of 0.998. The column showed an acceptable reproducibility and stability and is potentially used for practical clinical detection of the serum CEA level

    5-Fluoro-1-(4-meth­oxy­benz­yl)indoline-2,3-dione

    Get PDF
    In the title compound, C16H12FNO3, the dihedral angle between the benzene ring and the plane of the indole ring system is 71.60 (6)°. In the crystal, mol­ecules stack along the b axis through π–π inter­actions between the adjacent indole-2,3-dione units with a centroid–centroid distance of 3.649 (3) Å. Inter­molecular C—H⋯O=C and C—H⋯π inter­actions further stabilize the structure, forming a three-dimensional framework

    The M-T hook structure increases the potency of HIV-1 fusion inhibitor sifuvirtide and overcomes drug resistance

    Get PDF
    Objectives Peptides derived from the C-terminal heptad repeat (CHR) of HIV-1 gp41 are potent fusion inhibitors. We have recently demonstrated that the unique M-T hook structure preceding the pocket-binding motif of CHR peptide-based inhibitors can greatly improve their antiviral activity. In this study, we applied the M-T hook structure to optimize sifuvirtide (SFT), a potent CHR-derived inhibitor currently under Phase III clinical trials in China. Methods The peptide MT-SFT was generated by incorporating two M-T hook residues (Met-Thr) into the N-terminus of sifuvirtide. Multiple structural and functional approaches were used to determine the biophysical properties and antiviral activity of MT-SFT. Results The high-resolution crystal structure of MT-SFT reveals a highly conserved M-T hook conformation. Compared with sifuvirtide, MT-SFT exhibited a significant improvement in the ability to bind to the N-terminal heptad repeat, to block the formation of the six helix bundle and to inhibit HIV-1 Env-mediated cell fusion, viral entry and infection. Importantly, MT-SFT was fully active against sifuvirtide- and enfuvirtide (T20)-resistant HIV-1 variants and displayed a high genetic barrier to developing drug resistance. Conclusions Our studies have verified that the M-T hook structure offers a general strategy for designing novel HIV-1 fusion inhibitors and provide new insights into viral entry and inhibitio

    A novel trifunctional IgG-like bispecific antibody to inhibit HIV-1 infection and enhance lysis of HIV by targeting activation of complement

    Get PDF
    BACKGROUND: The complement system is not only a key component of innate immunity but also provides a first line of defense against invading pathogens, especially for viral pathogens. Human immunodeficiency virus (HIV), however, possesses several mechanisms to evade complement-mediated lysis (CoML) and exploit the complement system to enhance viral infectivity. Responsible for this intrinsic resistance against complement-mediated virolysis are complement regulatory membrane proteins derived from the host cell that inherently downregulates complement activation at several stages of the cascade. In addition, HIV is protected from complement-mediated lysis by binding soluble factor H (fH) through the viral envelope proteins, gp120 and gp41. Whereas inhibition of complement activity is the desired outcome in the vast majority of therapeutic approaches, there is a broader potential for complement-mediated inhibition of HIV by complement local stimulation. PRESENTATION OF THE HYPOTHESIS: Our previous studies have proven that the complement-mediated antibody-dependent enhancement of HIV infection is mediated by the association of complement receptor type 2 bound to the C3 fragment and deposited on the surface of HIV virions. Thus, we hypothesize that another new activator of complement, consisting of two dsFv (against gp120 and against C3d respectively) linked to a complement-activating human IgG1 Fc domain ((anti-gp120 × anti-C3d)-Fc), can not only target and amplify complement activation on HIV virions for enhancing the efficiency of HIV lysis, but also reduce the infectivity of HIV through blocking the gp120 and C3d on the surface of HIV. TESTING THE HYPOTHESIS: Our hypothesis was tested using cell-free HIV-1 virions cultivated in vitro and assessment of virus opsonization was performed by incubating appropriate dilutions of virus with medium containing normal human serum and purified (anti-gp120 × anti-C3d)-Fc proteins. As a control group, viruses were incubated with normal human serum under the same conditions. Virus neutralization assays were used to estimate the degree of (anti-gp120 × anti-C3d)-Fc lysis of HIV compared to untreated virus. IMPLICATIONS OF THE HYPOTHESIS: The targeted complement activator, (anti-gp120 × anti-C3d)-Fc, can be used as a novel approach to HIV therapy by abrogating the complement-enhanced HIV infection of cells

    Multifunctional magnetic Fe3O4 nanoparticles combined with chemotherapy and hyperthermia to overcome multidrug resistance

    Get PDF
    Yanyan Ren1,2,*, Haijun Zhang1,2,*, Baoan Chen1, Jian Cheng1, Xiaohui Cai1, Ran Liu1, Guohua Xia1, Weiwei Wu1, Shuai Wang1, Jiahua Ding1, Chong Gao1, Jun Wang1, Wen Bao1, Lei Wang1, Liang Tian1, Huihui Song1, Xuemei Wang1,2 1Department of Hematology and Oncology, Key Medical Discipline, Jiangsu Province, Zhongda Hospital, and Faculty of Oncology, Medical School, Nanjing, 2State Key Laboratory of Bioelectronics, Southeast University, Nanjing, People's Republic of China*These authors contributed equally to this workBackground: Multidrug resistance in cancer is a major obstacle for clinical therapeutics, and is the reason for 90% of treatment failures. This study investigated the efficiency of novel multifunctional Fe3O4 magnetic nanoparticles (Fe3O4-MNP) combined with chemotherapy and hyperthermia for overcoming multidrug resistance in an in vivo model of leukemia.Methods: Nude mice with tumor xenografts were randomly divided into a control group, and the treatment groups were allocated to receive daunorubicin, 5-bromotetrandrine (5-BrTet) and daunorubicin, Fe3O4-MNP, and Fe3O4-MNP coloaded with daunorubicin and 5-bromotetrandrine (Fe3O4-MNP-DNR-5-BrTet), with hyperthermia in an alternating magnetic field. We investigated tumor volume and pathology, as well as P-glycoprotein, Bcl-2, Bax, and caspase-3 protein expression to elucidate the effect of multimodal treatment on overcoming multidrug resistance.Results: Fe3O4-MNP played a role in increasing tumor temperature during hyperthermia. Tumors became significantly smaller, and apoptosis of cells was observed in both the Fe3O4-MNP and Fe3O4-MNP-DNR-5-BrTet groups, especially in the Fe3O4-MNP-DNR-5-BrTet group, while tumor volumes in the other groups had increased after treatment for 12 days. Furthermore, Fe3O4-MNP-DNR-5-BrTet with hyperthermia noticeably decreased P-glycoprotein and Bcl-2 expression, and markedly increased Bax and caspase-3 expression.Conclusion: Fe3O4-MNP-DNR-5-BrTet with hyperthermia may be a potential approach for reversal of multidrug resistance in the treatment of leukemia.Keywords: magnetic nanoparticles, daunorubicin, 5-bromotetrandrine, multidrug resistance, hyperthermi

    Biophysical Property and Broad Anti-HIV Activity of Albuvirtide, a 3-Maleimimidopropionic Acid-Modified Peptide Fusion Inhibitor

    Get PDF
    Albuvirtide (ABT) is a 3-maleimimidopropionic acid (MPA)-modified peptide HIV fusion inhibitor that can irreversibly conjugate to serum albumin. Previous studies demonstrated its in vivo long half-life and potent anti-HIV activity. Here, we focused to characterize its biophysical properties and evaluate its antiviral spectrum. In contrast to T20 (Enfuvirtide, Fuzeon), ABT was able to form a stable α-helical conformation with the target sequence and block the fusion-active six-helix bundle (6-HB) formation in a dominant-negative manner. It efficiently inhibited HIV-1 Env-mediated cell membrane fusion and virus entry. A large panel of 42 HIV-1 pseudoviruses with different genotypes were constructed and used for the antiviral evaluation. The results showed that ABT had potent inhibitory activity against the subtypes A, B and C that predominate the worldwide AIDS epidemics, and subtype B′, CRF07_BC and CRF01_AE recombinants that are currently circulating in China. Furthermore, ABT was also highly effective against HIV-1 variants resistant to T20. Taken together, our data indicate that the chemically modified peptide ABT can serve as an ideal HIV-1 fusion inhibitor

    FDU-12 Mesoporous Materials Detection Hg (II) Ions by QCM

    No full text
    corecore