11,303 research outputs found

    Demonstration of dispersive rarefaction shocks in hollow elliptical cylinder chains

    Full text link
    We report an experimental and numerical demonstration of dispersive rarefaction shocks (DRS) in a 3D-printed soft chain of hollow elliptical cylinders. We find that, in contrast to conventional nonlinear waves, these DRS have their lower amplitude components travel faster, while the higher amplitude ones propagate slower. This results in the backward-tilted shape of the front of the wave (the rarefaction segment) and the breakage of wave tails into a modulated waveform (the dispersive shock segment). Examining the DRS under various impact conditions, we find the counter-intuitive feature that the higher striker velocity causes the slower propagation of the DRS. These unique features can be useful for mitigating impact controllably and efficiently without relying on material damping or plasticity effects

    Study of pesudoscalar transition form factors within light front quark model

    Full text link
    We study the transition form factors of the pesudoscalar mesons (π,η\pi,\eta and η\eta^{\prime}) as functions of the momentum transfer Q2Q^2 within the light-front quark model. We compare our results with the recent experimental data by CELLO, CLEO, BaBar and Belle. By considering the possible uncertainties from the quark masses, we illustrate that our predicted form factors can fit with all the data, including those at the large Q2Q^2 regions.Comment: 10 pages, 4 figures, accepted for publication in Phys. Rev.

    Structural relaxation in a system of dumbbell molecules

    Full text link
    The interaction-site-density-fluctuation correlators, the dipole-relaxation functions, and the mean-squared displacements of a system of symmetric dumbbells of fused hard spheres are calculated for two representative elongations of the molecules within the mode-coupling theory for the evolution of glassy dynamics. For large elongations, universal relaxation laws for states near the glass transition are valid for parameters and time intervals similar to the ones found for the hard-sphere system. Rotation-translation coupling leads to an enlarged crossover interval for the mean-squared displacement of the constituent atoms between the end of the von Schweidler regime and the beginning of the diffusion process. For small elongations, the superposition principle for the reorientational α\alpha-process is violated for parameters and time intervals of interest for data analysis, and there is a strong breaking of the coupling of the α\alpha-relaxation scale for the diffusion process with that for representative density fluctuations and for dipole reorientations.Comment: 15 pages, 14 figures, Phys. Rev. E in pres

    On the "Security analysis and improvements of arbitrated quantum signature schemes"

    Full text link
    Recently, Zou et al. [Phys. Rev. A 82, 042325 (2010)] pointed out that two arbitrated quantum signature (AQS) schemes are not secure, because an arbitrator cannot arbitrate the dispute between two users when a receiver repudiates the integrity of a signature. By using a public board, they try to propose two AQS schemes to solve the problem. This work shows that the same security problem may exist in their schemes and also a malicious party can reveal the other party's secret key without being detected by using the Trojan-horse attacks. Accordingly, two basic properties of a quantum signature, i.e. unforgeability and undeniability, may not be satisfied in their scheme

    Engineering multiple levels of specificity in an RNA viral vector

    Get PDF
    Synthetic molecular circuits could provide powerful therapeutic capabilities, but delivering them to specific cell types and controlling them remains challenging. An ideal "smart" viral delivery system would enable controlled release of viral vectors from "sender" cells, conditional entry into target cells based on cell-surface proteins, conditional replication specifically in target cells based on their intracellular protein content, and an evolutionarily robust system that allows viral elimination with drugs. Here, combining diverse technologies and components, including pseudotyping, engineered bridge proteins, degrons, and proteases, we demonstrate each of these control modes in a model system based on the rabies virus. This work shows how viral and protein engineering can enable delivery systems with multiple levels of control to maximize therapeutic specificity

    QCD Effects in High Energy Processes

    Full text link
    In this talk, some important QCD effects in Higgs physics, supersymmetry and top physics, as well as the factorization and resummation techniques in QCD are reviewed.Comment: LaTeX, 13 pages, uses ws-ijmpa.cls. Based on an invited talk at the International Conference on QCD and Hadronic Physics, Beijing, China, June 16--20, 2005. Minor change

    π0γγ\pi^0\to\gamma^*\gamma transition form factor within Light Front Quark Model

    Full text link
    We study the transition form factor of π0γγ\pi^0\to\gamma^* \gamma as a function of the momentum transfer Q2Q^2 within the light-front quark model (LFQM). We compare our result with the experimental data by BaBar as well as other calculations based on the LFQM in the literature. We show that our predicted form factor fits well with the experimental data, particularly those at the large Q2Q^2 region.Comment: 11 pages, 4 figures, accepted for publication in PR

    Matrix models on the fuzzy sphere

    Get PDF
    Field theory on a fuzzy noncommutative sphere can be considered as a particular matrix approximation of field theory on the standard commutative sphere. We investigate from this point of view the scalar ϕ4\phi^4 theory. We demonstrate that the UV/IR mixing problems of this theory are localized to the tadpole diagrams and can be removed by an appropiate (fuzzy) normal ordering of the ϕ4\phi^4 vertex. The perturbative expansion of this theory reduces in the commutative limit to that on the commutative sphere.Comment: 6 pages, LaTeX2e, Talk given at the NATO Advanced Research Workshop on Confiment, Topology, and other Non-Perturbative Aspects of QCD, Stara Lesna, Slovakia, Jan. 21-27, 200

    Microscale resin-bonded permanent magnets for magnetic micro-electro-mechanical systems applications

    Get PDF
    A micromachining technique has been developed for the fabrication of microscale resin-bonded permanent magnets. Magnetic paste has been prepared from Sr-ferrite powder and an epoxy resin, filled into lithographically defined molds, and formed into resin-bonded magnets after room temperature curing. Coercivity of 356 kA/m (4480 Oe), retentivity of 33 mT (330 G), and energy density of 2.7 kJ/m(3) have been achieved in 65-mum-thick disk arrays with lateral dimensions ranging from 50 to 200 mum. Based on the developed magnet, a magnetic MEMS actuator has been designed, fabricated, and characterized. Actuation current up to +/-60 mA operated the actuator up to 70 mum in attractive and repulsive motion. This work can be used for producing thick-film type permanent magnets, which can be scaled from a few tens of micrometers to millimeters on various substrates
    corecore