1,265 research outputs found

    DRAFT Report:Community Systems Strengthening Toward a Research Agenda

    Get PDF
    Communities have a long history of acting to preserve and promote the health of their members. Public health researchers, programmers, and funders are increasingly recognizing that community involvement is essential to improving health, especially among populations that are disproportionately affected by HIV. The Global Fund to fight AIDS, Tuberculosis and Malaria, together with civil society organizations and other development partners, created the Community Systems Strengthening (CSS) Framework to help Global Fund applicants frame, define, and quantify efforts to strengthen community contributions engagement (Global Fund 2011). Although the use of a CSS approach in health programming implementation shows promise, it lacks a theoretical framework to guide collaborations with communities. Additionally, it suffers from a paucity of program designs and evaluation practices, an incomplete evidence-based rationale for investing in CSS, and imprecise definitions (e.g., what is meant by “community” and “CSS”).The purpose of this paper is to highlight promising areas for future research related to CSS. Toward this objective, we propose to lay a foundation for a CSS research agenda by using theories and approaches relevant to CSS, reinforced with evidence from projects that employ similar approaches

    BindingDB in 2015: A public database for medicinal chemistry, computational chemistry and systems pharmacology.

    Get PDF
    BindingDB, www.bindingdb.org, is a publicly accessible database of experimental protein-small molecule interaction data. Its collection of over a million data entries derives primarily from scientific articles and, increasingly, US patents. BindingDB provides many ways to browse and search for data of interest, including an advanced search tool, which can cross searches of multiple query types, including text, chemical structure, protein sequence and numerical affinities. The PDB and PubMed provide links to data in BindingDB, and vice versa; and BindingDB provides links to pathway information, the ZINC catalog of available compounds, and other resources. The BindingDB website offers specialized tools that take advantage of its large data collection, including ones to generate hypotheses for the protein targets bound by a bioactive compound, and for the compounds bound by a new protein of known sequence; and virtual compound screening by maximal chemical similarity, binary kernel discrimination, and support vector machine methods. Specialized data sets are also available, such as binding data for hundreds of congeneric series of ligands, drawn from BindingDB and organized for use in validating drug design methods. BindingDB offers several forms of programmatic access, and comes with extensive background material and documentation. Here, we provide the first update of BindingDB since 2007, focusing on new and unique features and highlighting directions of importance to the field as a whole

    Spectroscopy and Dynamics of the Predissociated, Quasi-linear S2 State of Chlorocarbene

    Get PDF
    In this work, we report on the spectroscopy and dynamics of the quasi-linear S2 state of chlorocarbene, CHCl, and its deuterated isotopologue using optical-optical double resonance (OODR) spectroscopy through selected rovibronic levels of the S1 state. This study, which represents the first observation of the S2 state in CHCl, builds upon our recent examination of the corresponding state in CHF, where pronounced mode specificity was observed in the dynamics, with predissociation rates larger for levels containing bending excitation. In the present work, a total of 14 S2 state vibrational levels with angular momentum ℓ = 1 were observed for CHCl, and 34 levels for CDCl. The range of ℓ in this case was restricted by the pronounced Renner-Teller effect in the low-lying S1 levels, which severely reduces the fluorescence lifetime for levels with Ka \u3e 0. Nonetheless, by exploiting different intermediate S1 levels, we observed progressions involving all three fundamental vibrations. For levels with long predissociation lifetimes, rotational constants were determined by measuring spectra through different intermediate J levels of the S1 state. Plots of the predissociation linewidth (lifetime) vs. energy for various S2 levels show an abrupt onset, which lies near the calculated threshold for elimination to form C(3P) + HCl on the triplet surface. Our experimental results are compared with a series of high level ab initio calculations, which included the use of a dynamically weighted full-valence CASSCF procedure, focusing maximum weight on the state of interest (the singlet and triplet states were computed separately). This was used as the reference for subsequent Davidson-corrected MRCI(+Q) calculations. These calculations reveal the presence of multiple conical intersections in the singlet manifold

    Cysteine 265 Is in the Active Site of, But Is Not Essential for Catalysis by tRNA-Guanine Transglycosylase (TGT) from Escherichia coli

    Full text link
    Site-directed mutagenesis and X-ray absorption spectroscopy studies have previously shown that the tRNA-guanine transglycosylase (TGT) from Escherichia coli is a zinc metalloprotein and identified the enzymic ligands to the zinc [Chong et al. (1995), Biochemistry 34, 3694–3701; Garcia et al. (1966), Biochemistry 35, 3133–3139]. During these studies one mutant, TGT (C265A), was found to exhibit a significantly lower specific activity, but was not found to be involved in the zinc site. The present report demonstrates that TGT is inactivated by treatment with thiol reagents ( e.g., DTNB, MMTS, and N-ethylmaleimide). Further, this inactivation is shown to be due to modification of cysteine 265. The kinetic parameters for the mutants TGT (C265A) and TGT (C265S), however, suggest that this residue is not performing a critical role in the TGT reaction. We conclude that cysteine 265 is in the active site of TGT, but is not performing a critical catalytic function. This conclusion is supported by the recent determination of the X-ray crystal structure of the TGT from Zymomonas mobilis [Romier et al. (1966), EMBO J. 15, 2850–2857], which reveals that the residue corresponding to cysteine 265 is distant from the putative catalytic site, but is in the middle of a region of the enzyme surface proposed to bind tRNA.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45082/1/10930_2004_Article_425322.pd

    Genetic Analyses of Common Infections in the Avon Longitudinal Study of Parents and Children Cohort

    Get PDF
    The burden of infections on an individual and public health is profound. Many observational studies have shown a link between infections and the pathogenesis of disease; however a greater understanding of the role of host genetics is essential. Children from the longitudinal birth cohort, the Avon Longitudinal Study of Parents and Children, had 14 antibodies measured in plasma at age 7: Alpha-casein protein, beta-casein protein, cytomegalovirus, Epstein-Barr virus, feline herpes virus, Helicobacter pylori, herpes simplex virus 1, influenza virus subtype H1N1, influenza virus subtype H3N2, measles virus, Saccharomyces cerevisiae, Theiler’s virus, Toxoplasma gondii, and SAG1 protein domain, a surface antigen of Toxoplasma gondii measured for greater precision. We performed genome-wide association analyses of antibody levels against these 14 infections (N = 357 – 5010) and identified three genome-wide signals (P < 5×10-8), two associated with measles virus antibodies and one with Toxoplasma gondii antibodies. In an association analysis focused on the human leukocyte antigen (HLA) region of the genome, we further detected 15 HLA alleles at a two-digit resolution and 23 HLA alleles at a four-digit resolution associated with five antibodies, with eight HLA alleles associated with Epstein-Barr virus antibodies showing strong evidence of replication in UK Biobank. We discuss how our findings from antibody levels complement other studies using self-reported phenotypes in understanding the architecture of host genetics related to infections
    corecore