101 research outputs found

    Inhibition of NADPH oxidase blocks NETosis and reduces thrombosis in heparin-induced thrombocytopenia

    Get PDF
    Heparin-induced thrombocytopenia (HIT) is associated with severe and potentially lethal thrombotic complications. NETosis was recently shown to be an important driver of thrombosis in HIT. We investigated the role of reactive oxygen species (ROS) and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2) and their contributions to thrombus development in HIT. We showed that neutrophil activation by HIT immune complexes induced ROS-dependent NETosis. Analysis of thrombi formed in a microfluidics system showed ROS production in both platelets and neutrophils, and abundant neutrophil extracellular traps (NETs) and ROS distributed throughout the clot. Neutrophil-targeted ROS inhibition was sufficient to block HIT-induced NETosis and thrombosis using human blood. Inhibition of NOX2 with diphenyleneiodonium chloride or GSK2795039 abrogated HIT-induced thrombi in vivo using FcγRIIa+/hPF4+-transgenic mice. Thrombocytopenia in mice remained unaffected by ROS inhibition. Increased ROS production in activated neutrophils was also confirmed using fresh blood from patients with active HIT. Our findings show that ROS and NOX2 play a crucial role in NETosis and thrombosis in HIT. This enhances our understanding of the processes driving thrombosis in HIT and identifies NOX2 as a potential new therapeutic target for antithrombotic treatment of HIT

    Polysaccharides from the root of Angelica sinensis promotes hematopoiesis and thrombopoiesis through the PI3K/AKT pathway

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dozens of Traditional Chinese Medicine (TCM) formulas have been used for promotion of "blood production" for centuries, and we are interested in developing novel thrombopoietic medicines from these TCMs. Our previous studies have demonstrated the hematopoietic effects of DangGui BuXue Tong (DBT), a formula composed of <it>Radix Angelicae Sinensis </it>and <it>Radix Astragali </it>in animal and cellular models. As a step further to identify and characterize the active chemical components of DBT, we tested the hematopoietic and particularly, thrombopoietic effects of polysaccharide-enriched fractions from the root of <it>Radix Angelicae Sinensis </it>(APS) in this study.</p> <p>Methods</p> <p>A myelosuppression mouse model was treated with APS (10 mg/kg/day). Peripheral blood cells from APS, thrombopoietin and vehicle-treated samples were then counted at different time-points. Using the colony-forming unit (CFU) assays, we determined the effects of APS on the proliferation and differentiation of hematopoietic stem/progenitor cells and megakaryocytic lineages. Using a megakaryocytic cell line M-07e as model, we analyzed the cellular apoptosis progression with and without APS treatment by Annexin V, Mitochondrial Membrane Potential and Caspase 3 assays. Last, the anti-apoptotic effect of APS on cells treated with Ly294002, a Phosphatidylinositol 3-Kinse inhibitor (PI3K) was also tested.</p> <p>Results</p> <p>In animal models, APS significantly enhanced not only the recovery of platelets, other blood cells and their progenitor cells, but also the formation of Colony Forming Unit (CFU). In M-07e cells, we observed the anti-apoptotic effect of APS. Treatment by Ly294002 alone increased the percentage of cells undergoing apoptosis. However, addition of APS to Ly294002-treated cells significantly reduced the percentage of cells undergoing apoptosis.</p> <p>Conclusions</p> <p>APS promotes hematopoiesis and thrombopoiesis in the mouse model. This effect likely resulted from the anti-apoptosis activity of APS and is likely to involve the PI3K/AKT pathway.</p

    Drug-induced immune thrombocytopenia: Mapping of the drug binding site to the membrane-proximal region of platelet GPIX

    No full text
    Drug-induced Immune thrombocytopenia (DIT) is a common complication of several medications, including commonly used antibiotics. The most widely studied DIT is caused by quinine. In DIT, antibodies predominantly bind to the platelet membrane glycoprotein (GP) IX in a drug-dependent fashion resulting in increased platelet clearance. Binding of the sensitizing drug, such as quinine, to GPIX has been proposed but is yet to be established. This work demonstrates that quinine is retained specifically by human GPIX. Quinine binding was first analyzed in wild-type mouse platelets and in transgenic mouse platelet expressing human GPIX using high performance liquid chromatography. Binding of quinine to GPIX was then measured in Chinese hamster ovary (CHO) cells expressing a combination of wild type, human or mouse, three human/mouse chimeric constructs and six mutant GPIX proteins. Quinine was retained by human GPIX. No detectable absorption was observed with mouse GPIX or human GPIbα. The quinine binding site was mapped to residues 110–115 of human GPIX suggesting that quinine interacts with specific residues of the GP. These findings provide further insights into the molecular mechanisms of DIT

    Drug-induced thrombocytopenia: MIBS trumps LIBS

    No full text

    Fabrication and characterization of carbon nanotube intermolecular p–n junctions

    No full text
    We demonstrate carbon nanotube intermolecular p–n junctions and study the electron transport mechanisms. Thermionic emission is the main transport mechanisms under forward bias while tunneling dominates the electron transport of the reverse bias condition. A kink point appearing on the plot of ln(I/V2) versus 1/V indicates that the transport mechanism experiences a transition from direct tunneling to the Fowler–Nordheim tunneling under the reverse bias condition. In contrast, the Arrhenius plot of the I–V curve at forward biases suggests that tunneling is more important than the thermionic emission below 50 K
    • …
    corecore