18 research outputs found

    Enhanced Susceptibility of Nasal Polyp Tissues to Avian and Human Influenza Viruses

    Get PDF
    BACKGROUND: Influenza viruses bind and infect respiratory epithelial cells through sialic acid on cell surface. Differential preference to sialic acid types contributes to host- and tissue-tropism of avian and seasonal influenza viruses. Although the highly pathogenic avian influenza virus H5N1 can infect and cause severe diseases in humans, it is not efficient in infecting human upper respiratory tract. This is because of the scarcity of its receptor, α2,3-linked sialic acid, in human upper airway. Expression of sialic acid can be influenced by various factors including inflammatory process. Allergic rhinitis and nasal polyp are common inflammatory conditions of nasal mucosa and may affect expression of the sialic acid and susceptibility to influenza infection. METHODOLOGY/PRINCIPAL FINDING: To test this hypothesis, we detected α2,3- and α2,6-linked sialic acid in human nasal polyp and normal nasal mucosal tissues by lectin staining and infected explants of those tissues with avian influenza viruses H5N1 and seasonal influenza viruses. We show here that mucosal surface of nasal polyp expressed higher level of α2,3- and α2,6-linked sialic acid than normal nasal mucosa. Accordingly, both H5N1 avian influenza viruses and seasonal influenza viruses replicated more efficiently in nasal polyp tissues explants. CONCLUSIONS/SIGNIFICANCE: Our data suggest a role of nasal inflammatory conditions in susceptibility to influenza infection, especially by avian influenza viruses, which is generally inefficient in infecting human upper airway. The increased receptor expression may contribute to increased susceptibility in some individuals. This may contribute to the gradual adaptation of the virus to human population

    Antibody Response to Influenza Hemagglutinin Conserved Stalk Domain after Sequential Immunization with Old Vaccine Strains

    No full text
    Hemagglutinin (HA) is the major envelope glycoprotein and antigen on the surface of influenza virions. The glycoprotein comprises a globular head and a stalk region. While immunodominant epitopes on influenza HA head are highly variable, the stalk domain is conserved. The variability of the HA head causes the antigenic drift that made the requirement of annual update of vaccine strains. Induction of antibody against the stalk domain has been proposed as an approach for a broadly protective influenza vaccine strategy. Sequential exposure to influenza strains with highly diverse HA heads but conserved stalks have been shown to induce antibody to the low immunogenic stalk domain. Here, we tested this approach by using old influenza vaccine strains that are decades apart in evolution. Inactivated whole virion vaccine of influenza A/Puerto Rico/8/1934, A/USSR/92/1977, and A/Thailand/102/2009 (H1N1) was sequentially immunized into BALB/c mice in comparison to immunization using single strain (A/Thailand/102/2009 (H1N1)). The sequentially immunized mice developed higher levels of binding antibody to the stalk domain. These suggested that using old vaccine strains in sequential vaccination may be a possible approach to induce antibody to the conserved stalk domain

    Human Schlafen 11 inhibits influenza A virus production

    No full text
    Schlafen (SLFN) proteins are a subset of interferon-stimulated early response genes with antiviral properties. An antiviral mechanism of SLFN11 was previously demonstrated in human immunodeficiency virus type 1 (HIV-1)-infected cells, and it was shown that SLFN11 inhibited HIV-1 virus production in a codon usage-specific manner. The codon usage patterns of many viruses are vastly different from those of their hosts. The codon usage-specific inhibition of HIV-1 expression by SLFN11 suggests that SLFN11 may be able to inhibit other viruses with a suboptimal codon usage pattern. However, the effect of SLFN11 on the replication of influenza A virus (IAV) has never been reported. The induction of SLFN11 expression was observed upon IAV infection. The reduction of SLFN11 expression also promotes influenza virus replication. Moreover, we found that overexpression of SLFN11 could reduce the expression of a reporter gene with a viral codon usage pattern, and the inhibition of viral hemagglutinin (HA) gene was codon-specific as the expression of codon optimized HA was not affected. These results indicate that SLFN11 inhibits the influenza A virus in a codon-specific manner and that SLFN11 may contribute to innate defense against influenza A viruses

    Double-Stranded RNA Adenosine Deaminases Enhance Expression of Human Immunodeficiency Virus Type 1 Proteinsâ–¿

    No full text
    ADARs (adenosine deaminases that act on double-stranded RNA) are RNA editing enzymes that catalyze a change from adenosine to inosine, which is then recognized as guanosine by translational machinery. We demonstrate here that overexpression of ADARs but not of an ADAR mutant lacking editing activity could upregulate human immunodeficiency virus type 1 (HIV-1) structural protein expression and viral production. Knockdown of ADAR1 by RNA silencing inhibited HIV-1 production. Viral RNA harvested from transfected ADAR1-knocked-down cells showed a decrease in the level of unspliced RNA transcripts. Overexpression of ADAR1 induced editing at a specific site in the env gene, and a mutant with the edited sequence was expressed more efficiently than the wild-type viral genome. These data suggested the role of ADAR in modulation of HIV-1 replication. Our data demonstrate a novel mechanism in which HIV-1 employs host RNA modification machinery for posttranscriptional regulation of viral protein expression

    Microparticle and anti-influenza activity in human respiratory secretion.

    No full text
    Respiratory secretions, such as saliva and bronchoalveolar fluid, contain anti-influenza activity. Multiple soluble factors have been described that exert anti-influenza activity and are believed to be responsible for the anti-influenza activity in respiratory secretions. It was previously shown that a bronchial epithelial cell culture could produce exosome-like particles with anti-influenza activity. Whether such extracellular vesicles in respiratory secretions have anti-influenza activity is unknown. Therefore, we characterized bronchoalveolar lavage fluid and found microparticles, which mostly stained positive for epithelial cell markers and both α2,3- and α2,6-linked sialic acid. Microparticles were purified from bronchoalveolar lavage fluid and shown to exhibit anti-influenza activity by a hemagglutination inhibition (HI) assay and a neutralization (NT) assay. In addition, physical binding between influenza virions and microparticles was demonstrated by electron microscopy. These findings indicate that respiratory microparticles containing viral receptors can exert anti-viral activity by probably trapping viral particles. This innate mechanism may play an important role in the defense against respiratory viruses

    Correlation between the percentages of lectin-positive cells and the viral titers.

    No full text
    <p>Dot plots of percentages of lectin-positive cells versus maximum viral titers produced from the same tissue samples show linear correlation with Pearson correlation coefficient of 0.889 for SNA (p = 0.003) and 0.859 for MAA I (p = 0.006). The data were derived from the same experiments shown in <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0012973#pone-0012973-g001" target="_blank">Figure 1</a>, <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0012973#pone-0012973-g002" target="_blank">2</a> and <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0012973#pone-0012973-g004" target="_blank">4</a>.</p

    Representative micrographs of nasal polyp and nasal turbinate mucosa showing distribution of α2,3- and α2,6-sialic acid.

    No full text
    <p>Tissue sections were stained with FITC conjugated lectin MAA I (left panel) or SNA (right panel), specific toward α2,3- or α2,6-linked sialic acid, respectively (a). To confirm the specificity and the presence of α2,3-linked sialic acid on nasal polyp, tissues were digested with 1U/ml of sialidase before MAA I staining. The sialidase-treated tissue (right) lost the staining signal on the apical surface, while non-treated section was positive (left) (b).</p

    Distribution of receptor and infection of nasal polyps and adjacent normal mucosa.

    No full text
    <p>Distribution of sialic acid receptors (a) and outputs of viral infection (b) of tissue samples from nasal polyps and adjacent normal mucosa from the same patients. The data were derived from experiments using nasal polyps and adjacent normal nasal mucosal tissue samples from two patients.</p
    corecore