1,749 research outputs found

    Group-level Emotion Recognition using Transfer Learning from Face Identification

    Full text link
    In this paper, we describe our algorithmic approach, which was used for submissions in the fifth Emotion Recognition in the Wild (EmotiW 2017) group-level emotion recognition sub-challenge. We extracted feature vectors of detected faces using the Convolutional Neural Network trained for face identification task, rather than traditional pre-training on emotion recognition problems. In the final pipeline an ensemble of Random Forest classifiers was learned to predict emotion score using available training set. In case when the faces have not been detected, one member of our ensemble extracts features from the whole image. During our experimental study, the proposed approach showed the lowest error rate when compared to other explored techniques. In particular, we achieved 75.4% accuracy on the validation data, which is 20% higher than the handcrafted feature-based baseline. The source code using Keras framework is publicly available.Comment: 5 pages, 3 figures, accepted for publication at ICMI17 (EmotiW Grand Challenge

    Smart Home Systems

    Get PDF

    High-Frequency Jet Ventilation for HIFU.

    Get PDF

    EFFECT OF SWIM PADDLES ON THE INTRA-CYCLIC VELOCITY VARIATIONS AND ON THE ARM COORDINATION OF FRONT CRAWL STROKE

    Get PDF
    This study analysed the effect of swimming with hand paddles on arm coordination and velocity pattern. Eight competitive swimmers performed two maximal aerobic tests. The maximal aerobic velocity was significantly higher when swimming with paddles but stroke rate, maximal heart rate and blood lactate values did not differ. The index of coordination (IdC) determined according to Chollet et al. (2000) and the intra-cyclic velocity variations were measured in two 25 m tests, one with and one without swim paddles, at a fixed stroke rate. When swimming with paddles, IdC and the duration of the propulsive phase increased significantly (~~0.0a5n)d the velocity signal frequency spectrum showed fewer harmon~cs (

    Nonlinear electron-phonon coupling in doped manganites

    Full text link
    We employ time-resolved resonant x-ray diffraction to study the melting of charge order and the associated insulator-metal transition in the doped manganite Pr0.5_{0.5}Ca0.5_{0.5}MnO3_3 after resonant excitation of a high-frequency infrared-active lattice mode. We find that the charge order reduces promptly and highly nonlinearly as function of excitation fluence. Density functional theory calculations suggest that direct anharmonic coupling between the excited lattice mode and the electronic structure drive these dynamics, highlighting a new avenue of nonlinear phonon control

    Heliospheric Transport of Neutron-Decay Protons

    Get PDF
    We report on new simulations of the transport of energetic protons originating from the decay of energetic neutrons produced in solar flares. Because the neutrons are fast-moving but insensitive to the solar wind magnetic field, the decay protons are produced over a wide region of space, and they should be detectable by current instruments over a broad range of longitudes for many hours after a sufficiently large gamma-ray flare. Spacecraft closer to the Sun are expected to see orders-of magnitude higher intensities than those at the Earth-Sun distance. The current solar cycle should present an excellent opportunity to observe neutron-decay protons with multiple spacecraft over different heliographic longitudes and distances from the Sun.Comment: 12 pages, 4 figures, to be published in special issue of Solar Physic

    How efficient are coronal mass ejections at accelerating solar energetic particles?

    Get PDF
    The largest solar energetic particle (SEP) events are thought to be due to particle acceleration at a shock driven by a fast coronal mass ejection (CME). We investigate the efficiency of this process by comparing the total energy content of energetic particles with the kinetic energy of the associated CMEs. The energy content of 23 large SEP events from 1998 through 2003 is estimated based on data from ACE, GOES, and SAMPEX, and interpreted using the results of particle transport simulations and inferred longitude distributions. CME data for these events are obtained from SOHO. When compared to the estimated kinetic energy of the associated coronal mass ejections (CMEs), it is found that large SEP events can extract ~10% or more of the CME kinetic energy. The largest SEP events appear to require massive, very energetic CMEs
    corecore