40 research outputs found

    The impact of forest fire on air-quality and visibility in Palangka Raya

    Get PDF
    It has been analyzed impact of forest fire on the air quality using PM10 parameter and visibility during 2000 – 2014 in Palangka Raya, Central Kalimantan province. Palangka Raya is an affected forest fire area with a monsoonal rainfall type which has one peak of the rainy season in January and one peak of the dry season in August. Drought condition has an impact on rising forest fire intensity causes increasing of PM10 concentration and decresing of visibility in July to November moreover when there is an El Niño phenomenon. The result of PM10 analysis shows that the air quality index in Palangka Raya during December - June is in a good  level category and still below the ambient air quality standard with an average concentration of 19 µg/m3. The impact of forest fire on declining air quality due to increasing of PM10 concentration occurred in July – November with an average concentration rising of 129 µg/m3. The El Niño phenomenon rises the PM10 concentration due to increasing of forest fires, but the increasing of PM10 is not comparable to the strength of El Niño, because of combustion condition and and human activities that play a role in forest fires. The worst impact of El Niño occurred in 2002, although the El Niño strength was only moderate, which is a half the time from July to November Palangka Raya covered air quality with dangerous levels with PM10 concentrations of more than µg/m3. A high PM10 concentration environment reduces the visibility significantly, which is visibility in the no fire condition about 8 km, but when the huge forest fire the visibility drops to 0.1 km

    Pollutant Concentration and Trajectory Patterns of PM2.5 including Meteo Factors in Jakarta City

    Get PDF
    PM2.5 particulate monitoring has been carried out in South Jakarta. The research objective is to examine the effect of meteorology and pollutant trajectories on PM2.5 conditions based on daily and seasonal patterns from January 2016 to December 2017. The sources of PM2.5 data come from DKI Jakarta BPLHD. The data analysis method uses excel to obtain daily and seasonal PM2.5 patterns (rainy season, transition season and dry season). PM2.5 pollutant trajectory patterns were obtained using a single-Particle Lagrangian Integrated (HYSPLIT) forward trajectory derived from NOAA (National Oceanic and Atmospheric Administration). Then the correlation between PM2.5 with meteorological parameters during 2016-2017 was analyzed. The results showed the maximum concentration of PM2.5 in 2016 occurred in the dry season (June-August) of 57.43 µg/m3 and decreased for 2017 by 50.84 µg/m3. Meanwhile, minimum PM2.5 concentration occurs during the rainy season (December-February) which is equal to 20 µg/m3 in 2016, in 2017 PM2.5 decreases to 15.5 µg/m3. The results of running model (HYSPLIT) forward trajectory of PM2.5 pollutants show when dry season pollutant leads to the western part of Jakarta city while the PM2.5 pollutant in rainy season moved from Jakarta city leads to the eastern region

    ANALISIS PENGARUH AEROSOL PADA AWAN DI INDONESIA [AEROSOL IMPACT ON CLOUDS ANALYSIS OVER INDONESIA]

    Get PDF
    Tulisan ini menguraikan penggunaan data Moderate Resolution Imaging Spectroradiometer (MODIS) level-2 pada satelit Terra MOD08 versi 5.1 untuk mempelajari pengaruh peningkatan fluks aerosol yang dinyatakan dengan parameter Aerosol Optical Depth (AOD) pada ukuran radius efektif awan cair dan awan es, pada fraksi awan dan pada tekanan puncak awan atau Cloud Top Pressure (CTP) di atas Indonesia. Data dikelompokkan untuk musim hujan (Desember, Januari, Februari atau DJF), periode transisi 1 (Maret, April, Mei atau MAM), musim kering (Juni, Juli, Agustus atau JJA) dan periode transisi 2 (September, Oktober, November atau SON) di atas wilayah yang meliputi 80 º-150 ºBT dan 12 ºS-12 ºLU untuk periode Maret 2000 – Februari 2012. Pengaruh tidak langsung yang bersifat positif dari aerosol di atas Indonesia pada ukuran radius efektif awan lebih terlihat pada awan cair dibandingkan pada awan es. Pengaruh positif aerosol pada radius efektif awan es terjadi di atas daratan Kalimantan, Sumatera, dan sebagian Jawa untuk semua periode, dengan pengaruh terkuat pada periode MAM dan SON di Kalimantan. Pengaruh negatif untuk awan es cenderung terjadi di atas lautan dan daerah-daerah dengan nilai AOD di bawah 0,3. Pengaruh positif aerosol pada radius efektif awan cair jelas terlihat pada periode MAM dan SON. Sedangkan untuk wilayah-wilayah dengan nilai rata-rata AOD yang tinggi (di atas 1) terlihat di sebagian Sumatera dan sebagian Kalimantan, peningkatan fluks aerosol menyebabkan peningkatan fraksi awan. Pengaruh peningkatan fluks aerosol di Indonesia cenderung meningkatkan nilai tekanan pada puncak awan, yang berarti membantu pembentukan awan-awan rendah.Kata kunci: Aerosol, Fraksi awan, MODIS, Terr

    NONE

    No full text
    Information on evapotranspiration (ET), or consumptive water use, important for waterresource planning and scheduling irrigation. Evapotranspiration can be calculated by using theparameters of the model climatology Thornthwaite, such as temperature. The parameters wereobtained from MODIS data (Moderate Resolution Imaging Spectroradiometer) level 2 MOD07from year 2000 to 2009. This study aimed to estimate the value of potential evapotranspirationmonthly average (mm / month) and total (mm / year) in the area of Citarum River Basin, one ofthe largest river basin in Indonesia. Data were processed using IDL programming language.Downstream area of Citarum area (north) had a higher ETP values compared with the upstream(south). June was the month that had lowest average value of ETP, while October had thehighest value of ETP.hal. 336-34

    Tips Mengelola Sampah

    No full text
    Hal. 4

    Seasonal Variations Of Nitrogen Dioxide And ITS Comparison With Emission Inventories

    No full text
    The objective of this study was to analyze seasonal variation of tropospheric NO2 in Indonesia compared to NOx emission and precipitation. Using satellite data, it was found that western of Indonesia had more NO2 than eastern. We then classified three regions based on high NO2 concentration values. The result was at dry season (less precipitation), NO2 reached maximum and vice versa while in wet season (more precipitation), NO2 peaked minimumHal.21-2

    PENERAPAN SUPPORT VECTOR MACHINES<br /> PADA PENDETEKSIAN WAJAH<br /> <br /> (Applying Support Vector Machines to Face Detection)

    No full text
    ABSTRAKSI: Support Vector Machine (SVM) pertama kali diperkenalkan oleh Vapnik pada tahun 1992 sebagai rangkaian harmonis konsep-konsep unggulan dalam bidang pattern recognition. Sebagai salah satu metode pattern recognition, usia SVM terbilang masih relatif muda. Walaupun demikian, evaluasi kemampuannya dalam berbagai aplikasinya menempatkannya sebagai state of the art dalam pattern recognition, dan dewasa ini merupakan salah satu tema yang berkembang dengan pesat. SVM adalah metode learning machine yang bekerja atas prinsip Structural Risk Minimization (SRM) dengan tujuan menemukan hyperplane terbaik yang memisahkan dua buah class pada input space. Face Detection merupakan contoh yang menarik untuk menguji kemampuan metode Support Vector Machines. Pendekatan yang digunakan dalam face detection ini adalah mengklasifikasikan masalah ke dalam dua kelas yaitu face dan nonface.Kata Kunci : pattern recognition, support vector machine,face detectionABSTRACT: -Keyword:

    Konsentrasi Pencemar Udara Sumatra Dan Kalimantan Hasil Pemantauan Satelit Tahun 2015

    No full text
    Kebakaran lahan/hutan merupakan salah satu permasalahan yang menimbulkan dampak buruk bagi kesehatan. El Nino sangat kuat pada tahun 2015 memicu kebakaran hutan yang semakin besar dan luas. Kejadian tersebut juga mengakibatkan perubahan konsentrasi pencemar yang dapat dideteksi melalui pemantauan satelit. Titik panas terbanyak terdeteksi di Sumatera dan Kalimantan. Terdapat jeda waktu selama 1 bulan antara kejadian kebakaran yang diwakili oleh jumlah titik panas dan perubahan kualitas udara yang diwakili oleh konsentrasi pencemar udara. Kejadian kebakaran berdampak langsung terhadap peningkatan konsentrasi spesies yang berumur pendek yaitu NO2 dan partikulat dengan r>0,5 serta penurunan visibillitas yang tajam (AOT>1).Hlm.193-20

    Partikulat halus (PM2.5) Dan dampak terhadap kesehatan manusia

    No full text
    corecore