32 research outputs found

    Towards Interactive, Reproducible Analytics at Scale on HPC Systems

    No full text

    The Materials Application Programming Interface (API): A simple, flexible and efficient API for materials data based on REpresentational State Transfer (REST) principles

    No full text
    In this paper, we describe the Materials Application Programming Interface (API), a simple, flexible and efficient interface to programmatically query and interact with the Materials Project database based on the REpresentational State Transfer (REST) pattern for the web. Since its creation in Aug 2012, the Materials API has been the Materials Project's de facto platform for data access, supporting not only the Materials Project's many collaborative efforts but also enabling new applications and analyses. We will highlight some of these analyses enabled by the Materials API, particularly those requiring consolidation of data on a large number of materials, such as data mining of structural and property trends, and generation of phase diagrams. We will conclude with a discussion of the role of the API in building a community that is developing novel applications and analyses based on Materials Project data

    Interactive Distributed Deep Learning with Jupyter Notebooks

    No full text
    Deep learning researchers are increasingly using Jupyter notebooks to implement interactive, reproducible workflows with embedded visualization, steering and documentation. Such solutions are typically deployed on small-scale (e.g. single server) computing systems. However, as the sizes and complexities of datasets and associated neural network models increase, high-performance distributed systems become important for training and evaluating models in a feasible amount of time. In this paper we describe our vision for Jupyter notebook solutions to deploy deep learning workloads onto high-performance computing systems. We demonstrate the effectiveness of notebooks for distributed training and hyper-parameter optimization of deep neural networks with efficient, scalable backends

    External apical root resorption

    No full text
    corecore