13 research outputs found

    Cytogenetic and molecular diagnosis of Fanconi anemia revealed two hidden phenotypes: Disorder of sex development and cerebro‐oculo‐facio‐skeletal syndrome

    No full text
    International audienceBackground: Several studies have shown a high rate of consanguinity and endogamy in North African populations. As a result, the frequency of autosomal recessive diseases is relatively high in the region with the co-occurrence of two or more diseases.Methods: We report here on a consanguineous Libyan family whose child was initially diagnosed as presenting Fanconi anemia (FA) with uncommon skeletal deformities. The chromosome breakage test has been performed using mitomycin C (MMC) while molecular analysis was performed by a combined approach of linkage analysis and whole exome sequencing.Results: Cytogenetic analyses showed that the karyotype of the female patient is 46,XY suggesting the diagnosis of a disorder of sex development (DSD). By looking at the genetic etiology of FA and DSD, we have identified p.[Arg798*];[Arg798*] mutation in FANCJ (OMIM #605882) gene responsible for FA and p.[Arg108*];[Arg1497Trp] in EFCAB6 (Gene #64800) gene responsible for DSD. In addition, we have incidentally discovered a novel mutation p.[Gly1372Arg];[Gly1372Arg] in the ERCC6 (CSB) (OMIM #609413) gene responsible for COFS that might explain the atypical severe skeletal deformities.Conclusion: The co-occurrence of clinical and overlapping genetic heterogeneous entities should be taken into consideration for better molecular and genetic counselin

    Oligogenic Inheritance Underlying Incomplete Penetrance of PROKR2 Mutations in Hypogonadotropic Hypogonadism

    Get PDF
    International audienceThe role of the prokineticin 2 pathway in human reproduction, olfactory bulb morphogenesis, and gonadotropin-releasing hormone secretion is well established. Recent studies have highlighted the implication of di/oligogenic inheritance in this disorder. In the present study, we aimed to identify the genetic mechanisms that could explain incomplete penetrance in hypogonadotropic hypogonadism (HH). This study involved two unrelated Tunisian patients with HH, which was triggered by identifying a homozygous p.(Pro290Ser) mutation in the PROKR2 gene in a girl (HH1) with Kallmann syndrome (KS). The functional effect of this variant has previously been well demonstrated. Unexpectedly, her unaffected father (HH1P) and brother (HH1F) also carried this genetic variation at a homozygous state. In the second family, we identified a heterozygous p.(Lys205del) mutation in PROKR2 , both in a male patient with normosmic idiopathic IHH (HH12) and his asymptomatic mother. Whole-exome sequencing in the three HH1 family members allowed the identification of additional variants in the prioritized genes. We then carried out digenic combination predictions using the oligogenic resource for variant analysis (ORVAL) software. For HH1, we found the highest number of disease-causing variant pairs. Notably, a CCDC141 variant (c.2803C > T) was involved in 18 pathogenic digenic combinations. The CCDC141 variant acts in an autosomal recessive inheritance mode, based on the digenic effect prediction data. For the second patient (HH12), prediction by ORVAL allowed the identification of an interesting pathogenic digenic combination between DUSP6 and SEMA7A genes, predicted as “dual molecular diagnosis.” The SEMA7A variant p.(Glu436Lys) is novel and predicted as a VUS by Varsome. Sanger validation revealed the absence of this variant in the healthy mother. We hypothesize that disease expression in HH12 could be induced by the digenic transmission of the SEMA7A and DUSP6 variants or a monogenic inheritance involving only the SEMA7A VUS if further functional assays allow its reclassification into pathogenic. Our findings confirm that homozygous loss-of-function genetic variations are insufficient to cause KS, and that oligogenism is most likely the main transmission mode involved in Congenital Hypogonadotropic Hypogonadism

    A Founder Large Deletion Mutation in Xeroderma Pigmentosum-Variant Form in Tunisia: Implication for Molecular Diagnosis and Therapy

    No full text
    Xeroderma pigmentosum Variant (XP-V) form is characterized by a late onset of skin symptoms. Our aim is the clinical and genetic investigations of XP-V Tunisian patients in order to develop a simple tool for early diagnosis. We investigated 16 suspected XP patients belonging to ten consanguineous families. Analysis of the POLH gene was performed by linkage analysis, long range PCR, and sequencing. Genetic analysis showed linkage to the POLH gene with a founder haplotype in all affected patients. Long range PCR of exon 9 to exon 11 showed a 3926 bp deletion compared to control individuals. Sequence analysis demonstrates that this deletion has occurred between two Alu-Sq2 repetitive sequences in the same orientation, respectively, in introns 9 and 10. We suggest that this mutation POLH NG_009252.1: g.36847_40771del3925 is caused by an equal crossover event that occurred between two homologous chromosomes at meiosis. These results allowed us to develop a simple test based on a simple PCR in order to screen suspected XP-V patients. In Tunisia, the prevalence of XP-V group seems to be underestimated and clinical diagnosis is usually later. Cascade screening of this founder mutation by PCR in regions with high frequency of XP provides a rapid and cost-effective tool for early diagnosis of XP-V in Tunisia and North Africa

    Whole Exome Sequencing allows the identification of two novel groups of Xeroderma pigmentosum in Tunisia, XP-D and XP-E: Impact on molecular diagnosis

    No full text
    International audienceBACKGROUND: Skin cancers (SC) are complex diseases that develop from complex combinations of genetic and environmental risk factors. One of the most severe and rare genetic diseases predisposing to SC is the Xeroderma pigmentosum (XP) syndrome.OBJECTIVES: First, to identify the genetic etiology of XP and to better classify affected patients. Second, to provide early molecular diagnosis for pre-symptomatic patient and finally to offer genetic counseling for related individuals.METHODS: Whole Exome Sequencing (WES) and Run Of Homozygosity (ROH) were performed for two patients belonging to two different multiplex consanguineous families. The identified mutations were confirmed by Sanger sequencing and researched in ten Tunisian families including a total of 25 affected individuals previously suspected as having XP group V (XP-V) form. All patients had mild dermatological manifestations, absence of neurological abnormalities and late onset of skin tumors.RESULTS: Screening for functional variations showed the presence of the ERCC2 p.Arg683Gln in XP14KA-2 patient and a novel mutation, DDB2 p. (Lys381Argfs*2), in XP51-MAH-1 patient. Sanger sequencing and familial segregation showed that the ERCC2 mutation is present at a homozygous state in 10 affected patients belonging to 3 families. The second mutation in DDB2, is present at a homozygous state in 5 affected cases belonging to the same family. These two mutations are absent in the remaining 10 affected patients. The ERCC2 c.2048G > A mutation is present in a medium ROH region (class B) suggesting that it mostly arises from ancient relatedness within individuals. However, the c.1138delG DDB2 mutation is present in a large ROH region (class C) suggesting that it arises from recent relatedness.CONCLUSION: To our knowledge, this is the first study that identifies XP-D and XP-E complementation groups in Tunisia. These two groups are very rare and under-diagnosed in the world and were not reported in North Africa

    Family specific genetic predisposition to breast cancer: results from Tunisian whole exome sequenced breast cancer cases

    No full text
    Abstract Background A family history of breast cancer has long been thought to indicate the presence of inherited genetic events that predispose to this disease. In North Africa, many specific epidemio-genetic characteristics have been observed in breast cancer families when compared to Western populations. Despite these specificities, the majority of breast cancer genetics studies performed in North Africa remain restricted to the investigation of the BRCA1 and BRCA2 genes. Thus, comprehensive data at a whole exome or whole genome level from local patients are lacking. Methods A whole exome sequencing (WES) of seven breast cancer Tunisian families have been performed using a family-based approach. We focused our analysis on BC-TN-F001 family that included two affected members that have been sequenced using WES. Relevant variants identified in BC-TN-F001 have been confirmed using Sanger sequencing. Then, we conducted an integrative analysis by combining our results with those from other WES studies in order to figure out the genetic transmission model of the newly identified genes. Biological network construction and protein–protein interactions analyses have been performed to decipher the molecular mechanisms likely accounting for the role of these genes in breast cancer risk. Results Sequencing, filtering strategies, and validation analysis have been achieved. For BC-TN-F001, no deleterious mutations have been identified on known breast cancer genes. However, 373 heterozygous, exonic and rare variants have been identified on other candidate genes. After applying several filters, 12 relevant high-risk variants have been selected. Our results showed that these variants seem to be inherited in a family specific model. This hypothesis has been confirmed following a thorough analysis of the reported WES studies. Enriched biological process and protein–protein interaction networks resulted in the identification of four novel breast cancer candidate genes namely MMS19, DNAH3, POLK and KATB6. Conclusions In this first WES application on Tunisian breast cancer patients, we highlighted the impact of next generation sequencing technologies in the identification of novel breast cancer candidate genes which may bring new insights into the biological mechanisms of breast carcinogenesis. Our findings showed that the breast cancer predisposition in non-BRCA families may be ethnic and/or family specific

    Family specific genetic predisposition to breast cancer: results from Tunisian whole exome sequenced breast cancer cases.

    No full text
    International audienceBACKGROUND:A family history of breast cancer has long been thought to indicate the presence of inherited genetic events that predispose to this disease. In North Africa, many specific epidemio-genetic characteristics have been observed in breast cancer families when compared to Western populations. Despite these specificities, the majority of breast cancer genetics studies performed in North Africa remain restricted to the investigation of the BRCA1 and BRCA2 genes. Thus, comprehensive data at a whole exome or whole genome level from local patients are lacking.METHODS:A whole exome sequencing (WES) of seven breast cancer Tunisian families have been performed using a family-based approach. We focused our analysis on BC-TN-F001 family that included two affected members that have been sequenced using WES. Relevant variants identified in BC-TN-F001 have been confirmed using Sanger sequencing. Then, we conducted an integrative analysis by combining our results with those from other WES studies in order to figure out the genetic transmission model of the newly identified genes. Biological network construction and protein-protein interactions analyses have been performed to decipher the molecular mechanisms likely accounting for the role of these genes in breast cancer risk.RESULTS:Sequencing, filtering strategies, and validation analysis have been achieved. For BC-TN-F001, no deleterious mutations have been identified on known breast cancer genes. However, 373 heterozygous, exonic and rare variants have been identified on other candidate genes. After applying several filters, 12 relevant high-risk variants have been selected. Our results showed that these variants seem to be inherited in a family specific model. This hypothesis has been confirmed following a thorough analysis of the reported WES studies. Enriched biological process and protein-protein interaction networks resulted in the identification of four novel breast cancer candidate genes namely MMS19, DNAH3, POLK and KATB6.CONCLUSIONS:In this first WES application on Tunisian breast cancer patients, we highlighted the impact of next generation sequencing technologies in the identification of novel breast cancer candidate genes which may bring new insights into the biological mechanisms of breast carcinogenesis. Our findings showed that the breast cancer predisposition in non-BRCA families may be ethnic and/or family specific

    Pharmacogenetic landscape of Metabolic Syndrome components drug response in Tunisia and comparison with worldwide populations

    No full text
    <div><p>Genetic variation is an important determinant affecting either drug response or susceptibility to adverse drug reactions. Several studies have highlighted the importance of ethnicity in influencing drug response variability that should be considered during drug development. Our objective is to characterize the genetic variability of some pharmacogenes involved in the response to drugs used for the treatment of Metabolic Syndrome (MetS) in Tunisia and to compare our results to the worldwide populations. A set of 135 Tunisians was genotyped using the Affymetrix Chip 6.0 genotyping array. Variants located in 24 Very Important Pharmacogenes (VIP) involved in MetS drug response were extracted from the genotyping data. Analysis of variant distribution in Tunisian population compared to 20 worldwide populations publicly available was performed using R software packages. Common variants between Tunisians and the 20 investigated populations were extracted from genotyping data. Multidimensional screening showed that Tunisian population is clustered with North African and European populations. The greatest divergence was observed with the African and Asian population. In addition, we performed Inter-ethnic comparison based on the genotype frequencies of five VIP biomarkers. The genotype frequencies of the biomarkers rs3846662, rs1045642, rs7294 and rs12255372 located respectively in <i>HMGCR</i>, <i>ABCB1</i>, <i>VKORC1 and TCF7L2</i> are similar between Tunisian, Tuscan (TSI) and European (CEU). The genotype frequency of the variant rs776746 located in <i>CYP3A5</i> gene is similar between Tunisian and African populations and different from CEU and TSI. The present study shows that the genetic make up of the Tunisian population is relatively complex in regard to pharmacogenes and reflects previous historical events. It is important to consider this ethnic difference in drug prescription in order to optimize drug response to avoid serious adverse drug reactions. Taking into account similarities with other neighboring populations, our study has an impact not only on the Tunisian population but also on North African population which are underrepresented in pharmacogenomic studies.</p></div

    STRUCTURE analysis of the genetic relationship between 24 populations.

    No full text
    <p>K is the possible numbers of parental population clusters. One color represents one parental population into different color segments. Best K level was observed at K = 3, where a vertical the proportion of each ancestral component in a single individual is represented by a vertical bar divided into 3 colors. 601 markers study—displaying results for runs with highest likelihood out of 27 runs in each cluster K3 to 10. Black vertical lines identify the population boundaries. The height extent of each color within an individual’s color bar corresponds to the estimated membership of the individual in one of the clusters; each cluster is assigned a separate <b>color</b>. The bars with multiple colors can be interpreted as genetic admixture or as relative probabilities of belonging to the different clusters.</p
    corecore