75 research outputs found

    Ornstein-Uhlenbeck-Cauchy Process

    Full text link
    We combine earlier investigations of linear systems with L\'{e}vy fluctuations [Physica {\bf 113A}, 203, (1982)] with recent discussions of L\'{e}vy flights in external force fields [Phys.Rev. {\bf E 59},2736, (1999)]. We give a complete construction of the Ornstein-Uhlenbeck-Cauchy process as a fully computable model of an anomalous transport and a paradigm example of Doob's stable noise-supported Ornstein-Uhlenbeck process. Despite the nonexistence of all moments, we determine local characteristics (forward drift) of the process, generators of forward and backward dynamics, relevant (pseudodifferential) evolution equations. Finally we prove that this random dynamics is not only mixing (hence ergodic) but also exact. The induced nonstationary spatial process is proved to be Markovian and quite apart from its inherent discontinuity defines an associated velocity process in a probabilistic sense.Comment: Latex fil

    Coupling and Strong Feller for Jump Processes on Banach Spaces

    Full text link
    By using lower bound conditions of the L\'evy measure w.r.t. a nice reference measure, the coupling and strong Feller properties are investigated for the Markov semigroup associated with a class of linear SDEs driven by (non-cylindrical) L\'evy processes on a Banach space. Unlike in the finite-dimensional case where these properties have also been confirmed for L\'evy processes without drift, in the infinite-dimensional setting the appearance of a drift term is essential to ensure the quasi-invariance of the process by shifting the initial data. Gradient estimates and exponential convergence are also investigated. The main results are illustrated by specific models on the Wiener space and separable Hilbert spaces.Comment: 31 page

    Functional and Banach Space Stochastic Calculi: Path-Dependent Kolmogorov Equations Associated with the Frame of a Brownian Motion

    Get PDF
    First, we revisit basic theory of functional It\uf4/path-dependent calculus, using the formulation of calculus via regularization. Relations with the corresponding Banach space valued calculus are explored. The second part of the paper is devoted to the study of the Kolmogorov type equation associated with the so called window Brownian motion, called path-dependent heat equation, for which well-posedness at the level of strict solutions is established. Then, a notion of strong approximating solution, called strong-viscosity solution, is introduced which is supposed to be a substitution tool to the viscosity solution. For that kind of solution, we also prove existence and uniqueness

    Regularity of Ornstein-Uhlenbeck processes driven by a L{\'e}vy white noise

    Full text link
    The paper is concerned with spatial and time regularity of solutions to linear stochastic evolution equation perturbed by L\'evy white noise "obtained by subordination of a Gaussian white noise". Sufficient conditions for spatial continuity are derived. It is also shown that solutions do not have in general \cadlag modifications. General results are applied to equations with fractional Laplacian. Applications to Burgers stochastic equations are considered as well.Comment: This is an updated version of the same paper. In fact, it has already been publishe

    Controllability and Qualitative properties of the solutions to SPDEs driven by boundary L\'evy noise

    Full text link
    Let uu be the solution to the following stochastic evolution equation (1) du(t,x)& = &A u(t,x) dt + B \sigma(u(t,x)) dL(t),\quad t>0; u(0,x) = x taking values in an Hilbert space \HH, where LL is a \RR valued L\'evy process, A:HHA:H\to H an infinitesimal generator of a strongly continuous semigroup, \sigma:H\to \RR bounded from below and Lipschitz continuous, and B:\RR\to H a possible unbounded operator. A typical example of such an equation is a stochastic Partial differential equation with boundary L\'evy noise. Let \CP=(\CP_t)_{t\ge 0} %{\CP_t:0\le t<\infty}thecorrespondingMarkoviansemigroup.Weshowthat,ifthesystem(2)du(t)=Au(t)dt+Bv(t),t>0u(0)=xisapproximatecontrollableintime the corresponding Markovian semigroup. We show that, if the system (2) du(t) = A u(t)\: dt + B v(t),\quad t>0 u(0) = x is approximate controllable in time T>0,thenundersomeadditionalconditionson, then under some additional conditions on Band and A,forany, for any x\in Htheprobabilitymeasure the probability measure \CP_T^\star \delta_xispositiveonopensetsof is positive on open sets of H.Secondly,asanapplication,weinvestigateunderwhichconditionon. Secondly, as an application, we investigate under which condition on %\HHandontheLeˊvyprocess and on the L\'evy process Landontheoperator and on the operator Aand and B$ the solution of Equation [1] is asymptotically strong Feller, respective, has a unique invariant measure. We apply these results to the damped wave equation driven by L\'evy boundary noise

    Stochastic differential equations in Hilbert spaces

    No full text

    O warunkowaniach dla zbieżnych do zera ciągów wektorów losowych w przestrzeniach Banacha

    No full text
    https://doi.org/10.26485/0459-6854/2018/68.3/1
    corecore