142,854 research outputs found
Temporal Variability Corrections for Advanced Microwave Scanning Radiometer E (AMSR-E) Surface Soil Moisture: Case Study in Little River Region, Georgia, U.S.
Statistical correction methods, the Cumulative Distribution Function (CDF) matching technique and Regional Statistics Method (RSM) are applied to adjust the limited temporal variability of Advanced Microwave Scanning Radiometer E (AMSR-E) data using the Common Land Model (CLM). The temporal variability adjustment between CLM and AMSR-E data was conducted for annual and seasonal periods for 2003 in the Little River region, GA. The results showed that the statistical correction techniques improved AMSR-E’s limited temporal variability as compared to ground-based measurements. The regression slope and intercept improved from 0.210 and 0.112 up to 0.971 and -0.005 for the non-growing season. The R2 values also modestly improved. The Moderate Resolution Imaging Spectroradiometer (MODIS) Leaf Area Index (LAI) products were able to identify periods having an attenuated microwave brightness signal that are not likely to benefit from these statistical correction techniques
Decay constants and radiative decays of heavy mesons in light-front quark model
We investigate the magnetic dipole decays of various
heavy-flavored mesons such as and
using the light-front quark model
constrained by the variational principle for the QCD-motivated effective
Hamiltonian. The momentum dependent form factors for decays are obtained in the frame and then analytically
continued to the timelike region by changing to in the form factors. The coupling constant for real
photon case is then obtained in the limit as , i.e.
. The weak decay constants of heavy pseudoscalar
and vector mesons are also calculated. Our numerical results for the decay
constants and radiative decay widths for the heavy-flavored mesons are overall
in good agreement with the available experimental data as well as other
theoretical model calculations.Comment: 9 pages, 3figures, added few more references, typos correcte
Constituent quark model for nuclear stopping in high energy nuclear collisions
We study the nuclear stopping in high energy nuclear collisions using the
constituent quark model. It is assumed that wounded nucleons with different
number of interacted quarks hadronize in different ways. The probabilities of
having such wounded nucleons are evaluated for proton-proton, proton-nucleus
and nucleus-nucleus collisions. After examining our model in proton-proton and
proton-nucleus collisions and fixing the hadronization functions, it is
extended to nucleus-nucleus collisions. It is used to calculate the rapidity
distribution and the rapidity shift of final state protons in nucleus-nucleus
collisions. The computed results are in good agreement with the experimental
data on ^{32}\mbox{S} +\ ^{32}\mbox{S} at AGeV and
^{208}\mbox{Pb} +\ ^{208}\mbox{Pb} at AGeV. Theoretical
predictions are also given for proton rapidity distribution in ^{197}\mbox{Au}
+\ ^{197}\mbox{Au} at AGeV (BNL-RHIC). We predict that the
nearly baryon free region will appear in the midrapidity region and the
rapidity shift is .Comment: 40 pages, 16 Postscript figures, submitted to Phys. Rev.
- …
