624 research outputs found
PO-0698: Clinical outcomes of 4D CBCT-guided stereotactic body radiotherapy for inoperable hepatocellular carcinomas
Poster: Clinical track: Gastrointestinal tumours (upper and lower GI)published_or_final_version3rd ESTRO Forum, Barcelona, Spain, 24-28 April 2015. In Radiotherapy & Oncology, 2015, v. 115, p. S342-S34
Time and Amplitude of Afterpulse Measured with a Large Size Photomultiplier Tube
We have studied the afterpulse of a hemispherical photomultiplier tube for an
upcoming reactor neutrino experiment. The timing, the amplitude, and the rate
of the afterpulse for a 10 inch photomultiplier tube were measured with a 400
MHz FADC up to 16 \ms time window after the initial signal generated by an LED
light pulse. The time and amplitude correlation of the afterpulse shows several
distinctive groups. We describe the dependencies of the afterpulse on the
applied high voltage and the amplitude of the main light pulse. The present
data could shed light upon the general mechanism of the afterpulse.Comment: 11 figure
Shear Behaviour of Ligthweight Sandwich Reinforced Concrete Slabs
A new lightweight sandwich reinforced concrete (LSRC) section has been developed using prefabricated autoclaved aerated concrete (AAC) blocks as infill in the section where concrete is considered ineffective under bending. This paper presents an investigation into the strength and behaviour of LSRC slabs subjected to shear. Eight tests were conducted on four slabs, one solid and three different types of LSRC slabs. Based on the test results, all LSRC slabs exhibited similar behaviour to the equivalent solid slab and had varying shear capacities depending on the profile of AAC blocks infill. The obtained shear capacities were compared with the design values based on several major design codes and found to be within the safety predictions of the codes. ANSYS was employed to develop nonlinear finite element models of LSRC slabs. The numerical results agree well with the experimental one
Maximal surface group representations in isometry groups of classical Hermitian symmetric spaces
Higgs bundles and non-abelian Hodge theory provide holomorphic methods with
which to study the moduli spaces of surface group representations in a
reductive Lie group G. In this paper we survey the case in which G is the
isometry group of a classical Hermitian symmetric space of non-compact type.
Using Morse theory on the moduli spaces of Higgs bundles, we compute the number
of connected components of the moduli space of representations with maximal
Toledo invariant.Comment: v2: added due credits to the work of Burger, Iozzi and Wienhard. v3:
corrected count of connected components for G=SU(p,q) (p \neq q); added due
credits to the work of Xia and Markman-Xia; minor corrections and
clarifications. 31 page
Temperature dependence of current self-oscillations and electric field domains in sequential tunneling doped superlattices
We examine how the current--voltage characteristics of a doped weakly coupled
superlattice depends on temperature. The drift velocity of a discrete drift
model of sequential tunneling in a doped GaAs/AlAs superlattice is calculated
as a function of temperature. Numerical simulations and theoretical arguments
show that increasing temperature favors the appearance of current
self-oscillations at the expense of static electric field domain formation. Our
findings agree with available experimental evidence.Comment: 7 pages, 5 figure
A Multilevel Product Model for Simulation-Based Design of Mechanical Systems
This paper presents a multilevel product model that supports Simulation-Based Design (SBD) of mechanical systems, from pre liminary to detailed design stages The pnmary goal of the SBD is to achieve product designs featuring better performance and greater du rability and reliability through computer-based modeling, engineering analysis, and design trade-off. A Computer-Aided Design (CAD) model combined with engineering parameters and mathematical equations that simulate physical behavior of the mechanical system constitute its product model for SBD. For preliminary design, improvement of system performance, including dynamics and human factors, is usually the primary focus A CAD model with reasonably accurate physical parameters, such as mass properties of major components or assemblies, is defined as the base definition of the product model for SBD. A number of simulation models are derived from the base definition to sup port simulation of the mechanical system performance A parametric study can be conducted to search for design alternatives using dimen sion parameters created in the parameterized CAD model. The CAD model and base definition are then refined from the preliminary design stage to support intermediate designs. Intermediate designs will primarily focus on product subsystem performance. A product model is evolved by refining geometric representation of mechanical components in CAD, and expanding product assembly into parts and sub assemblies for further engineering analysis Component designs for performance, such as fatigue, mechanical reliability, and structural per formance, as well as maintainability are the primary focus in the detailed design stage. A detailed product model evolved from that of the previous design is needed In the detailed design stage, a systematic design trade-off method supports design improvement. A High Mobil ity Multi-Purpose Wheeled Vehicle (HMMWV) is employed to illustrate and demonstrate the proposed product model.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline
Effect of Nyquist Noise on the Nyquist Dephasing Rate in 2d Electron Systems
We measure the effect of externally applied broadband Nyquist noise on the
intrinsic Nyquist dephasing rate of electrons in a two-dimensional electron gas
at low temperatures. Within the measurement error, the phase coherence time is
unaffected by the externally applied Nyquist noise, including applied noise
temperatures of up to 300 K. The amplitude of the applied Nyquist noise from
100 MHz to 10 GHz is quantitatively determined in the same experiment using a
microwave network analyzer.Comment: 5 pages, 4 figures. Author affiliation clarified; acknowledgements
modified. Replacement reason clarifie
Energy band structure and intrinsic coherent properties in two weakly linked Bose Einstein Condensates
The energy band structure and energy splitting due to quantum tunneling in
two weakly linked Bose-Einstein condensates were calculated by using the
instanton method. The intrinsic coherent properties of Bose Josephson junction
were investigated in terms of energy splitting. For , the
energy splitting is small and the system is globally phase coherent. In the
opposite limit, , the energy splitting is large and the
system becomes a phase dissipation. Our reslults suggest that one should
investigate the coherence phenomna of BJJ in proper condition such as
.Comment: to appear in Phys. Rev. A, 2 figure
- …