5 research outputs found

    Orbiton-mediated multi-phonon scattering in La1−x_{1-x}Srx_xMnO3_3

    Full text link
    We report on Raman scattering measurements of single crystalline La1−x_{1-x}Srx_xMnO3_3 (xx=0, 0.06, 0.09 and 0.125), focusing on the high frequency regime. We observe multi-phonon scattering processes up to fourth-order which show distinct features: (i) anomalies in peak energy and its relative intensity and (ii) a pronounced temperature-, polarization-, and doping-dependence. These features suggest a mixed orbiton-phonon nature of the observed multi-phonon Raman spectra.Comment: 6pages, 6figures, submitted to PR

    Existence of orbital polarons in ferromagnetic insulating La1−x_{1-x}Srx_xMnO3_{3} (0.11<x<<x<0.14) evidenced by giant phonon softening

    Full text link
    We present an inelastic light scattering study of single crystalline (La1−y_{1-y}Pry_y)1−x_{1-x}Srx_{x}MnO3_3 (0≤x≤0.140\leq x\leq0.14,y=0y=0 and x=1/8x=1/8,0≤y≤0.50\leq y\leq0.5). A giant softening up to 20 - 30 cm−1^{-1} of the Mn-O breathing mode has been observed only for the ferromagnetic insulating (FMI) samples (0.11≤x≤0.140.11\leq x \leq 0.14) upon cooling below the Curie temperature. With increasing Pr-doping the giant softening is gradually suppressed. This is attributed to a coupling of the breathing mode to orbital polarons which are present in the FMI phase.Comment: 4 pages, 5 figure

    Optical study of orbital excitations in transition-metal oxides

    Get PDF
    The orbital excitations of a series of transition-metal compounds are studied by means of optical spectroscopy. Our aim was to identify signatures of collective orbital excitations by comparison with experimental and theoretical results for predominantly local crystal-field excitations. To this end, we have studied TiOCl, RTiO3 (R=La, Sm, Y), LaMnO3, Y2BaNiO5, CaCu2O3, and K4Cu4OCl10, ranging from early to late transition-metal ions, from t_2g to e_g systems, and including systems in which the exchange coupling is predominantly three-dimensional, one-dimensional or zero-dimensional. With the exception of LaMnO3, we find orbital excitations in all compounds. We discuss the competition between orbital fluctuations (for dominant exchange coupling) and crystal-field splitting (for dominant coupling to the lattice). Comparison of our experimental results with configuration-interaction cluster calculations in general yield good agreement, demonstrating that the coupling to the lattice is important for a quantitative description of the orbital excitations in these compounds. However, detailed theoretical predictions for the contribution of collective orbital modes to the optical conductivity (e.g., the line shape or the polarization dependence) are required to decide on a possible contribution of orbital fluctuations at low energies, in particular in case of the orbital excitations at about 0.25 eV in RTiO3. Further calculations are called for which take into account the exchange interactions between the orbitals and the coupling to the lattice on an equal footing.Comment: published version, discussion of TiOCl extended to low T, improved calculation of orbital excitation energies in TiOCl, figure 16 improved, references updated, 33 pages, 20 figure
    corecore