34,576 research outputs found

    Thermal activation energy of 3D vortex matter in NaFe1-xCoxAs (x=0.01, 0.03 and 0.07) single crystals

    Get PDF
    We report on the thermally activated flux flow dependency on the doping dependent mixed state in NaFe1-xCoxAs (x=0.01, 0.03, and 0.07) crystals using the magnetoresistivity in the case of B//c-axis and B//ab-plane. It was found clearly that irrespective of the doping ratio, magnetoresistivity showed a distinct tail just above the Tc, offset associated with the thermally activated flux flow (TAFF) in our crystals. Furthermore, in TAFF region the temperature dependence of the activation energy follows the relation U(T, B)=U_0 (B) (1-T/T_c )^q with q=1.5 in all studied crystals. The magnetic field dependence of the activation energy follows a power law of U_0 (B)~B^(-{\alpha}) where the exponent {\alpha} is changed from a low value to a high value at a crossover field of B=~2T, indicating the transition from collective to plastic pinning in the crystals. Finally, it is suggested that the 3D vortex phase is the dominant phase in the low-temperature region as compared to the TAFF region in our series samples

    Land use survey and mapping and water resources investigation in Korea

    Get PDF
    The author has identified the following significant results. Land use imagery is applicable to land use classification for small scale land use mapping less than 1:250,000. Land use mapping by satellite is more efficient and more cost-effective than land use mapping from conventional medium altitude aerial photographs. Six categories of level 1 land use classification are recognizable from MSS imagery. A hydrogeomorphological study of the Han River basin indicates that band 7 is useful for recognizing the soil and the weathering part of bed rock. The morphological change of the main river is accurately recognized and the drainage system in the area observed is easily classified because of the more or less simple rock type. Although the direct hydrological characteristics are not obtained from the MSS imagery, the indirect information such as the permeability of the soil and the vegetation cover, is helpful in interpreting the hydrological aspects

    Kondo Effect and Josephson Current through a Quantum Dot between Two Superconductors

    Full text link
    We investigate the supercurrent through a quantum dot for the whole range of couplings using the numerical renormalization group method. We find that the Josephson current switches abruptly from a π\pi- to a 0-phase as the coupling increases. At intermediate couplings the total spin in the ground state depends on the phase difference between the two superconductors. Our numerical results can explain the crossover in the conductance observed experimentally by Buitelaar \textit{et al.} [Phys. Rev. Lett. \textbf{89}, 256 801 (2002)].Comment: Fig.2 and corresponding text have been changed; Several other small change

    Singe ferroelectric and chiral magnetic domain of single-crystalline BiFeO3_3 in an electric field

    Full text link
    We report polarized neutron scattering and piezoresponse force microscopy studies of millimeter-sized single crystals of multiferroic BiFeO3_3. The crystals, grown below the Curie temperature, consist of a single ferroelectric domain. Two unique electric polarization directions, as well as the populations of equivalent spiral magnetic domains, can be switched reversibly by an electric field. A ferroelectric monodomain with a single-qq single-helicity spin spiral can be obtained. This level of control, so far unachievable in thin films, makes single-crystal BiFeO3_3 a promising object for multiferroics research.Comment: 4 figures in separate jpg file

    Dielectric constants of Ir, Ru, Pt, and IrO2: Contributions from bound charges

    Full text link
    We investigated the dielectric functions ϵ\epsilon(ω\omega) of Ir, Ru, Pt, and IrO2_2, which are commonly used as electrodes in ferroelectric thin film applications. In particular, we investigated the contributions from bound charges ϵb\epsilon^{b}(ω\omega), since these are important scientifically as well as technologically: the ϵ1b\epsilon_1^{b}(0) of a metal electrode is one of the major factors determining the depolarization field inside a ferroelectric capacitor. To obtain ϵ1b\epsilon_1^{b}(0), we measured reflectivity spectra of sputtered Pt, Ir, Ru, and IrO2 films in a wide photon energy range between 3.7 meV and 20 eV. We used a Kramers-Kronig transformation to obtain real and imaginary dielectric functions, and then used Drude-Lorentz oscillator fittings to extract ϵ1b\epsilon_1^{b}(0) values. Ir, Ru, Pt, and IrO2_2 produced experimental ϵ1b\epsilon_1^{b}(0) values of 48±\pm10, 82±\pm10, 58±\pm10, and 29±\pm5, respectively, which are in good agreement with values obtained using first-principles calculations. These values are much higher than those for noble metals such as Cu, Ag, and Au because transition metals and IrO2_2 have such strong d-d transitions below 2.0 eV. High ϵ1b\epsilon_1^{b}(0) values will reduce the depolarization field in ferroelectric capacitors, making these materials good candidates for use as electrodes in ferroelectric applications.Comment: 26 pages, 6 figures, 2 table

    CP Violation in the Top-Quark Pair Production at a Next Linear Collider

    Get PDF
    We provide a detailed, model-independent, study for CP violation effects due to the T-odd top-quark electric dipole moment (EDM) and weak dipole moment (WDM) in the top-quark pair production via e+ee^+e^- and two-photon annihilation at a next e+ee^+e^- linear collider (NLC). There are two methods in detecting CP violation effects in these processes. One method makes use of measurements of various spin correlations in the final decay products of the produced top-quark pair, while the other is to measure various CP-odd polarization asymmetry effects of the initial states. In the e+ee^+e^- case only the first method can be used, and in the γγ\gamma\gamma case both methods can be employed. We provide a complete classification of angular correlations of the tt and tˉ\bar{t} decay products under CP and CP\tilde{T} which greatly faciliate CP tests in the e+ee^+e^- mode. Concentrating on the second method with the Compton back-scattered high-energetic laser light off the electron or positron beam in the two-photon mode, we construct two CP-odd and CP\tilde{T}-even initial polarization configurations and apply them to investigating CP-violating effects due to the top-quark EDM. With a typical set of experimental parameters at the NLC, we compare the 1-\sigma sensitivities to the top-quark EDM and WDM in the e+ee^+e^- mode and the two-photon mode. Some model expectation values of the T-odd parameters are compared with the results.Comment: 45 pages(LaTeX), 10 eps figures, uses epsfig.st

    Andreev Bound States in the Kondo Quantum Dots Coupled to Superconducting Leads

    Full text link
    We have studied the Kondo quantum dot coupled to two superconducting leads and investigated the subgap Andreev states using the NRG method. Contrary to the recent NCA results [Clerk and Ambegaokar, Phys. Rev. B 61, 9109 (2000); Sellier et al., Phys. Rev. B 72, 174502 (2005)], we observe Andreev states both below and above the Fermi level.Comment: 5 pages, 5 figure

    InGaN nano-ring structures for high-efficiency light emitting diodes

    Get PDF
    A technique based on the Fresnel diffraction effect for the fabrication of nano-scale site-controlled ring structures in InGaN/GaN multi-quantum well structures has been demonstrated. The ring structures have an internal diameter of 500 nm and a wall width of 300 nm. A 1 cm-1 Raman shift has been measured, signifying substantial strain relaxation from the fabricated structure. The 9 nm blueshift observed in the cathodoluminescence spectra can be attributed to band filling and/or screening of the piezoelectric field. A light emitting diode based on this geometry has been demonstrated
    corecore