133 research outputs found

    A low-cost Lactobacillus salivarius L29 growth medium containing molasses and corn steep liquor allows the attainment of high levels of cell mass and lactic acid production

    Get PDF
    The aim of the present work was to formulate a Lactobacillus salivarius L29 industrial fermentation medium. High cell numbers and good levels of lactic acid by a L. salivarius L29 were obtained after shake flask fermentation using molasses as the sole carbon source and corn steep liquor (CSL (industrial grade); an organic source of N) as the principal nitrogen source. The optimum concentrations of molasses and CSL facilitating good cell growth and high-level lactic acid production were found to be 6 and 6% (both v/v), respectively. The maximum cell yield was 2.02 × 109 CFU/mL, thus about 15% lower than that obtained when MRS broth was employed for 5-L fermenters culture. Lactic acid production upon growth in industrial broth was 105 g/L; the total sugar content of the medium was 118 g/L (sucrose: glucose: fructose 68:14:18; w/w/w). Upon growth in De Man, Rogosa and Sharpe (MRS) broth (the total sugar content of which was 127 g/L, all of which was glucose), the lactic acid yield was 120 g/L. The optimized industrial growth medium was significantly more economical than were conventional broths.Keywords: Lactobacillus salivarius L29, molasses, corn steep liquor, culture medium optimization, lactic acidAfrican Journal of Biotechnology Vol. 12(16), pp. 2013-201

    Pullulan Nanoparticles as Prebiotics Enhance the Antibacterial Properties of Lactobacillus plantarum Through the Induction of Mild Stress in Probiotics

    Get PDF
    Synbiotics, which are the combination of probiotics and prebiotics, have recently attracted attention because of their synergistic net health benefits. Probiotics have been used as alternatives to antibiotics. Among the probiotics, Lactobacillus plantarum (LP) has shown strong antimicrobial activity against Escherichia coli K99, a major livestock pathogen. In this study, we aimed to investigate the antimicrobial activity of phthalyl pullulan nanoparticle (PPN)-treated LP. Interestingly, when PPNs were added to LP, the PPNs were internalized into the LP through an energy-dependent and galactose transporter-dependent mechanism. Additionally, more plantaricin, a natural antibacterial peptide, was secreted from PPN-treated LP than from untreated or pullulan-treated LP. Furthermore, antimicrobial activity against Gram-negative Escherichia coli K99 and Gram-positive Listeria monocytogenes by PPN-treated LP was higher than those of untreated or pullulan-treated LP. It is thought that the enhanced antimicrobial properties of the PPN-treated LP are due to intracellular stimulation. Overall, this research provides a new method of producing plantaricin in LP through intracellular stimulation by internalized PPNs

    Molecular characterization of tetracycline- and quinolone-resistant Aeromonas salmonicida isolated in Korea

    Get PDF
    The antibiotic resistance of 16 Aeromonas (A.) salmonicida strains isolated from diseased fish and environmental samples in Korea from 2006 to 2009 were investigated in this study. Tetracycline or quinolone resistance was observed in eight and 16 of the isolates, respectively, based on the measured minimal inhibitory concentrations. Among the tetracycline-resistant strains, seven of the isolates harbored tetA gene and one isolate harbored tetE gene. Additionally, quinolone-resistance determining regions (QRDRs) consisting of the gyrA and parC genes were amplified and sequenced. Among the quinolone-resistant A. salmonicida strains, 15 harbored point mutations in the gyrA codon 83 which were responsible for the corresponding amino acid substitutions of Ser83→Arg83 or Ser83→Asn83. We detected no point mutations in other QRDRs, such as gyrA codons 87 and 92, and parC codons 80 and 84. Genetic similarity was assessed via pulsed-field gel electrophoresis, and the results indicated high clonality among the Korean antibiotic-resistant strains of A. salmonicida

    Characteristics of primary and immortalized fibroblast cells derived from the miniature and domestic pigs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The pig, <it>Sus scrofa domestica </it>includes both the miniature and commercial domestic breed. These animals have influenced the human life and economies and have been studied throughout history. Although the miniature breeds are more recent and have increasingly been used in a variety of biomedical studies, their cell lines have rarely been established. Therefore, we sought to establish primary and immortal cell lines derived from both the miniature and domestic pig to better enable insight into possible <it>in vivo </it>growth differences.</p> <p>Results</p> <p>The <it>in vitro </it>lifespan of primary domestic pig fibroblast (PF) and miniature pig fibroblast (MPF) cells using a standard 3T3 protocol was determined. Both of the primary PF and MPF cells were shown to have a two-step replicative senescence barrier. Primary MPF cells exhibited a relatively shorter lifespan and slower proliferation rate compared to those of primary PF cells. Beyond senescence barriers, lifespan-extended PF and MPF cells were eventually established and indicated spontaneous cellular immortalization. In contrast to the immortalized PF cells, immortal MPF cells showed a transformed phenotype and possessed more frequent chromosomal abnormalities and loss of p53 regulatory function. The lifespan of primary MPF and PF cells was extended by inactivation of the p53 function using transduction by SV40LT without any detectable senescent phenotype.</p> <p>Conclusion</p> <p>These results suggest that p53 signaling might be a major determinant for the replicative senescence in the MPF cells that have the shorter lifespan and slower growth rate compared to PF cells <it>in vitro</it>.</p

    Trigger factor assisted soluble expression of recombinant spike protein of porcine epidemic diarrhea virus in Escherichia coli

    Get PDF
    This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.Background Porcine epidemic diarrhea virus (PEDV) is a highly contagious enteric pathogen of swine. The spike glycoprotein (S) of PEDV is the major immunogenic determinant that plays a pivotal role in the induction of neutralizing antibodies against PEDV, which therefore is an ideal target for the development of subunit vaccine. In an attempt to develop a subunit vaccine for PEDV, we cloned two different fragments of S protein and expressed as glutathione S-transferase (GST)-tagged fusion proteins, namely rGST-COE and rGST-S1D, in E.coli. However, the expression of these recombinant protein antigens using a variety of expression vectors, strains, and induction conditions invariably resulted in inclusion bodies. To achieve the soluble expression of recombinant proteins, several chaperone co-expression systems were tested in this study. Results We firstly tested various chaperone co-expression systems and found that co-expression of trigger factor (TF) with recombinant proteins at 15 °C was most useful in soluble production of rGST-COE and rGST-S1D compared to GroEL-ES and DnaK-DnaJ-GrpE/GroEL-ES systems. The soluble rGST-COE and rGST-S1D were purified using glutathione Sepharose 4B with a yield of 7.5 mg/l and 5 mg/l, respectively. Purified proteins were detected by western blot using mouse anti-GST mAb and pig anti-PEDV immune sera. In an indirect ELISA, purified proteins showed immune reactivity with pig anti-PEDV immune sera. Finally, immunization of mice with 10 μg of purified proteins elicited highly potent serum IgG and serum neutralizing antibody titers. Conclusions In this study, soluble production of recombinant spike protein of PEDV, rGST-COE and rGST-S1D, were achieved by using TF chaperone co-expression system. Our results suggest that soluble rGST-COE and rGST-S1D produced by co-expressing chaperones may have the potential to be used as subunit vaccine antigens

    Needle-Free Immunization with Chitosan-Based Systems

    No full text
    Despite successful use, needle-based immunizations have several issues such as the risk of injuries and infections from the reuse of needles and syringes and the low patient compliance due to pain and fear of needles during immunization. In contrast, needle-free immunizations have several advantages including ease of administration, high level of patient compliance and the possibility of mass vaccination. Thus, there is an increasing interest on developing effective needle-free immunizations via cutaneous and mucosal approaches. Here, we discuss several methods of needle-free immunizations and provide insights into promising use of chitosan systems for successful immunization
    corecore