70 research outputs found
Atomic-scale control of magnetic anisotropy via novel spin-orbit coupling effect in La2/3Sr1/3MnO3/SrIrO3 superlattices
Magnetic anisotropy (MA) is one of the most important material properties for
modern spintronic devices. Conventional manipulation of the intrinsic MA, i.e.
magnetocrystalline anisotropy (MCA), typically depends upon crystal symmetry.
Extrinsic control over the MA is usually achieved by introducing shape
anisotropy or exchange bias from another magnetically ordered material. Here we
demonstrate a pathway to manipulate MA of 3d transition metal oxides (TMOs) by
digitally inserting non-magnetic 5d TMOs with pronounced spin-orbit coupling
(SOC). High quality superlattices comprised of ferromagnetic La2/3Sr1/3MnO3
(LSMO) and paramagnetic SrIrO3 (SIO) are synthesized with the precise control
of thickness at atomic scale. Magnetic easy axis reorientation is observed by
controlling the dimensionality of SIO, mediated through the emergence of a
novel spin-orbit state within the nominally paramagnetic SIO.Comment: Proceedings of the National Academy of Sciences, May 201
Spontaneous orbital polarization in the nematic phase of FeSe
The origin of nematicity in FeSe remains a critical outstanding question
towards understanding unconventional superconductivity in proximity to nematic
order. To understand what drives the nematicity, it is essential to determine
which electronic degree of freedom admits a spontaneous order parameter
independent from the structural distortion. Here, we use X-ray linear dichroism
at the Fe K pre-edge to measure the anisotropy of the 3d orbital occupation as
a function of in situ applied stress and temperature across the nematic
transition. Along with X-ray diffraction to precisely quantify the strain
state, we reveal a lattice-independent, spontaneously-ordered orbital
polarization within the nematic phase, as well as an orbital polarizability
that diverges as the transition is approached from above. These results provide
strong evidence that spontaneous orbital polarization serves as the primary
order parameter of the nematic phase.Comment: Main: 22 pages, 4 figures. Supp: 32 pages, 18 figure
Emergent electric field control of phase transformation in oxide superlattices.
Electric fields can transform materials with respect to their structure and properties, enabling various applications ranging from batteries to spintronics. Recently electrolytic gating, which can generate large electric fields and voltage-driven ion transfer, has been identified as a powerful means to achieve electric-field-controlled phase transformations. The class of transition metal oxides provide many potential candidates that present a strong response under electrolytic gating. However, very few show a reversible structural transformation at room-temperature. Here, we report the realization of a digitally synthesized transition metal oxide that shows a reversible, electric-field-controlled transformation between distinct crystalline phases at room-temperature. In superlattices comprised of alternating one-unit-cell of SrIrO3 and La0.2Sr0.8MnO3, we find a reversible phase transformation with a 7% lattice change and dramatic modulation in chemical, electronic, magnetic and optical properties, mediated by the reversible transfer of oxygen and hydrogen ions. Strikingly, this phase transformation is absent in the constituent oxides, solid solutions and larger period superlattices. Our findings open up this class of materials for voltage-controlled functionality
Decoupling carrier concentration and electron-phonon coupling in oxide heterostructures observed with resonant inelastic x-ray scattering
We report the observation of multiple phonon satellite features in ultra thin
superlattices of form SrIrO/SrTiO using resonant inelastic x-ray
scattering. As the values of and vary the energy loss spectra show a
systematic evolution in the relative intensity of the phonon satellites. Using
a closed-form solution for the cross section, we extract the variation in the
electron-phonon coupling strength as a function of and . Combined with
the negligible carrier doping into the SrTiO layers, these results indicate
that tuning of the electron-phonon coupling can be effectively decoupled from
doping. This work showcases both a feasible method to extract the
electron-phonon coupling in superlattices and unveils a potential route for
tuning this coupling which is often associated with superconductivity in
SrTiO-based systems.Comment: 4 pages, 5 figure
- …