19,995 research outputs found

    Spin-transfer torque in magnetic multilayer nanopillars

    Full text link
    We consider a quasi one-dimensional configuration consisting of two small pieces of ferromagnetic material separated by a metallic one and contacted by two metallic leads. A spin-polarized current is injected from one lead. Our goal is to investigate the correlation induced between the magnetizations of the two ferromagnets by spin-transfer torque. This torque results from the interaction between the magnetizations and the spin polarization of the current. We discuss the dynamics of a single ferromagnet, the extension to the case of two ferromagnets, and give some estimates for the parameters based on experiments.Comment: To appear in the Journal of Physics: Conference Series (Proceedings of the International Conference on Nanoscience and Technology, Basel, 2006

    Effects of Substituents on the Length of Central C(sp^3)-C(sp^3) Bond in Anthracene Photodimers and Related Molecules

    Get PDF
    Effects of substituents on the lengths of the central C–C single bond in the butterfly-shaped anthracene photodimers (1)–(7) and lepidopterenes (8) are studied. X-Ray analysis of the photodimer (10) of 9,10-difluoroanthracene gave a C(9)–C(10′) bond length of 1.631 (3)Å. An attempt to re-determine molecular structure of the photoisomer (5) of [2.2](9,10) anthracenophane (12) by neutron diffraction analysis is also reported [C(9)–C(10′): obs. 1.64(1), calc. 1.63(1)Å]. The D_2 structure that had been proposed for the minimum-energy conformation of (5) is questioned and the D_(2h) symmetric conformation is suggested on the basis of the diffraction results and MNDO calculations. The experimentally determined distances of the long central C–C bonds in these butterfly compounds including dianthronyl (9) are well reproduced by MNDO calculations with a standard deviation of 0.013 Å. Small but significant further elongation of the central C–C bond by up to 0.07 Å resulting from annulation of cyclobutane or cyclopentane ring in anthracene photodimers and from remote chlorine substitution in lepidopterene are interpreted in terms of the increased π→σ^* orbital interaction

    Pauli paramagnetism of an ideal Fermi gas

    Full text link
    We show how to use trapped ultracold atoms to measure the magnetic susceptibility of a two-component Fermi gas. The method is illustrated for a non-interacting gas of 6^6Li, using the tunability of interactions around a wide Feshbach resonances. The susceptibility versus effective magnetic field is directly obtained from the inhomogeneous density profile of the trapped atomic cloud. The wings of the cloud realize the high field limit where the polarization approaches 100%, which is not accessible for an electron gas.Comment: 5 pages, 4 figure

    Large single crystal growth of BaFe1.87Co0.13As2 using a nucleation pole

    Full text link
    Co-doped iron arsenic single crystal of BaFe1.87Co0.13As2 with dimension up to 20 x 10 x 2 mm3 were grown by a nucleation pole: an alumina stick served as nucleation center during growth. The high quality of crystalline was illustrated by the measurements of neutron rocking curve and X-ray diffraction pattern. A very sharp superconducting transition temperature Tc~25 K was revealed by both resistivity and susceptibility measurements. A nearly 100% shielding fraction and bulk nature of the superconductivity for the single crystal were confirmed using magnetic susceptibility data.Comment: 4 pages, 5 figure

    Iron pnictides: Single crystal growth and effect of doping on structural, transport and magnetic properties

    Full text link
    We demonstrate the preparation of large, free standing iron pnictide single crystals with a size up to 20 x 10 x 1 mm3 using solvents in zirconia crucibles under argon atmosphere. Transport and magnetic properties are investigated to study the effect of potassium doping on the structural and superconducting property of the compounds. The spin density wave (SDW) anomaly at Ts ~138 K in BaFe2As2 single crystals from self-flux shifts to Ts ~85 K due to Sn solvent growth. We show direct evidence for an incorporation of Sn on the Fe site. The electrical resistivity data show a sharp superconducting transition temperature Tc~38.5 K for the single crystal of Ba0.68K0.32Fe2As2. A nearly 100% shielding fraction and bulk nature of the superconductivity for the single crystal were confirmed by magnetic susceptibility data. A sharp transition Tc~25 K occurred for the single crystal of Sr0.85K0.15Fe2As2. There is direct evidence for a coexistence of the SDW and superconductivity in the low doping regime of Sr1-xKxFe2As2 single crystals. Structural implications of the doping effects as well as the coexistence of the two order parameters are discussed.Comment: 22 pages, 9 figure

    Application of Non-Orthogonal Multiple Access in LTE and 5G Networks

    Get PDF
    As the latest member of the multiple access family, non-orthogonal multiple access (NOMA) has been recently proposed for 3GPP Long Term Evolution (LTE) and envisioned to be an essential component of 5th generation (5G) mobile networks. The key feature of NOMA is to serve multiple users at the same time/frequency/code, but with different power levels, which yields a significant spectral efficiency gain over conventional orthogonal MA. This article provides a systematic treatment of this newly emerging technology, from its combination with multiple-input multiple-output (MIMO) technologies, to cooperative NOMA, as well as the interplay between NOMA and cognitive radio. This article also reviews the state of the art in the standardization activities concerning the implementation of NOMA in LTE and 5G networks.Comment: to appear in IEEE Communications Magazin
    • …
    corecore