19,995 research outputs found
Spin-transfer torque in magnetic multilayer nanopillars
We consider a quasi one-dimensional configuration consisting of two small
pieces of ferromagnetic material separated by a metallic one and contacted by
two metallic leads. A spin-polarized current is injected from one lead. Our
goal is to investigate the correlation induced between the magnetizations of
the two ferromagnets by spin-transfer torque. This torque results from the
interaction between the magnetizations and the spin polarization of the
current. We discuss the dynamics of a single ferromagnet, the extension to the
case of two ferromagnets, and give some estimates for the parameters based on
experiments.Comment: To appear in the Journal of Physics: Conference Series (Proceedings
of the International Conference on Nanoscience and Technology, Basel, 2006
Effects of Substituents on the Length of Central C(sp^3)-C(sp^3) Bond in Anthracene Photodimers and Related Molecules
Effects of substituents on the lengths of the central C–C single bond in the butterfly-shaped anthracene photodimers (1)–(7) and lepidopterenes (8) are studied. X-Ray analysis of the photodimer (10) of 9,10-difluoroanthracene gave a C(9)–C(10′) bond length of 1.631 (3)Å. An attempt to re-determine molecular structure of the photoisomer (5) of [2.2](9,10) anthracenophane (12) by neutron diffraction analysis is also reported [C(9)–C(10′): obs. 1.64(1), calc. 1.63(1)Å]. The D_2 structure that had been proposed for the minimum-energy conformation of (5) is questioned and the D_(2h) symmetric conformation is suggested on the basis of the diffraction results and MNDO calculations. The experimentally determined distances of the long central C–C bonds in these butterfly compounds including dianthronyl (9) are well reproduced by MNDO calculations with a standard deviation of 0.013 Å. Small but significant further elongation of the central C–C bond by up to 0.07 Å resulting from annulation of cyclobutane or cyclopentane ring in anthracene photodimers and from remote chlorine substitution in lepidopterene are interpreted in terms of the increased π→σ^* orbital interaction
Pauli paramagnetism of an ideal Fermi gas
We show how to use trapped ultracold atoms to measure the magnetic
susceptibility of a two-component Fermi gas. The method is illustrated for a
non-interacting gas of Li, using the tunability of interactions around a
wide Feshbach resonances. The susceptibility versus effective magnetic field is
directly obtained from the inhomogeneous density profile of the trapped atomic
cloud. The wings of the cloud realize the high field limit where the
polarization approaches 100%, which is not accessible for an electron gas.Comment: 5 pages, 4 figure
Recommended from our members
Loss of muscleblind-like 1 results in cardiac pathology and persistence of embryonic splice isoforms.
Cardiac dysfunction is a prominent cause of mortality in myotonic dystrophy I (DM1), a disease where expanded CUG repeats bind and disable the muscleblind-like family of splice regulators. Deletion of muscleblind-like 1 (Mbnl1(ΔE2/ΔE2)) in 129 sv mice results in QRS, QTc widening, bundle block and STc narrowing at 2-4 months of age. With time, cardiac function deteriorates further and at 6 months, decreased R wave amplitudes, sinus node dysfunction, cardiac hypertrophy, interstitial fibrosis, multi-focal myocardial fiber death and calcification manifest. Sudden death, where no end point illness is overt, is observed at a median age of 6.5 and 4.8 months in ~67% and ~86% of male and female Mbnl1(ΔE2/ΔE2) mice, respectively. Mbnl1 depletion results in the persistence of embryonic splice isoforms in a network of cardiac RNAs, some of which have been previously implicated in DM1, regulating sodium and calcium currents, Scn5a, Junctin, Junctate, Atp2a1, Atp11a, Cacna1s, Ryr2, intra and inter cellular transport, Clta, Stx2, Tjp1, cell survival, Capn3, Sirt2, Csda, sarcomere and cytoskeleton organization and function, Trim55, Mapt, Pdlim3, Pdlim5, Sorbs1, Sorbs2, Fhod1, Spag9 and structural components of the sarcomere, Myom1, Tnnt2, Zasp. Thus this study supports a key role for Mbnl1 loss in the initiation of DM1 cardiac disease
Large single crystal growth of BaFe1.87Co0.13As2 using a nucleation pole
Co-doped iron arsenic single crystal of BaFe1.87Co0.13As2 with dimension up
to 20 x 10 x 2 mm3 were grown by a nucleation pole: an alumina stick served as
nucleation center during growth. The high quality of crystalline was
illustrated by the measurements of neutron rocking curve and X-ray diffraction
pattern. A very sharp superconducting transition temperature Tc~25 K was
revealed by both resistivity and susceptibility measurements. A nearly 100%
shielding fraction and bulk nature of the superconductivity for the single
crystal were confirmed using magnetic susceptibility data.Comment: 4 pages, 5 figure
Iron pnictides: Single crystal growth and effect of doping on structural, transport and magnetic properties
We demonstrate the preparation of large, free standing iron pnictide single
crystals with a size up to 20 x 10 x 1 mm3 using solvents in zirconia crucibles
under argon atmosphere. Transport and magnetic properties are investigated to
study the effect of potassium doping on the structural and superconducting
property of the compounds. The spin density wave (SDW) anomaly at Ts ~138 K in
BaFe2As2 single crystals from self-flux shifts to Ts ~85 K due to Sn solvent
growth. We show direct evidence for an incorporation of Sn on the Fe site. The
electrical resistivity data show a sharp superconducting transition temperature
Tc~38.5 K for the single crystal of Ba0.68K0.32Fe2As2. A nearly 100% shielding
fraction and bulk nature of the superconductivity for the single crystal were
confirmed by magnetic susceptibility data. A sharp transition Tc~25 K occurred
for the single crystal of Sr0.85K0.15Fe2As2. There is direct evidence for a
coexistence of the SDW and superconductivity in the low doping regime of
Sr1-xKxFe2As2 single crystals. Structural implications of the doping effects as
well as the coexistence of the two order parameters are discussed.Comment: 22 pages, 9 figure
Application of Non-Orthogonal Multiple Access in LTE and 5G Networks
As the latest member of the multiple access family, non-orthogonal multiple
access (NOMA) has been recently proposed for 3GPP Long Term Evolution (LTE) and
envisioned to be an essential component of 5th generation (5G) mobile networks.
The key feature of NOMA is to serve multiple users at the same
time/frequency/code, but with different power levels, which yields a
significant spectral efficiency gain over conventional orthogonal MA. This
article provides a systematic treatment of this newly emerging technology, from
its combination with multiple-input multiple-output (MIMO) technologies, to
cooperative NOMA, as well as the interplay between NOMA and cognitive radio.
This article also reviews the state of the art in the standardization
activities concerning the implementation of NOMA in LTE and 5G networks.Comment: to appear in IEEE Communications Magazin
- …