1,131 research outputs found

    Binding Mode Identification for 7-keto-8-Aminopelargonic Acid Synthase (AtKAPAS) Inhibitors

    Get PDF
    In this study, we determined the 3D structure of Arabidopsis thaliana KAPAS by homology modeling. We then investigated the binding mode of compounds obtained from the in-house library using computational docking methods. From the flexible docking study, we achieved high dock scores for the active compounds denoted in this study as compound 3 and compound 4. Thus, we highlight the flexibility of specific residues, Lys 312 and Phe 172, when used in active sites

    Surgical experience of pericardial mesothelioma presenting as constrictive pericarditis

    Get PDF
    SummaryWe report two cases, which had been initially diagnosed with constrictive pericarditis but later were definitely diagnosed with mesothelioma after receiving pericardiectomy. The two patients complained of dyspnea. Chest computed tomography showed mild pericardial effusion and thickened pericardium, which was found enveloping the heart without any lumps. Pericardiectomy (phrenic nerve to phrenic nerve) was performed and post-operative histology confirmed malignant mesothelioma. One patient had recurrence near the pericardium at 7 months post-operatively and died at 11 months post-operatively. Another patient, after receiving chemotherapy, is still alive at 16 months post-operatively. We consider that pericardial mesothelioma, an extremely rare disease exhibiting clinical signs similar to those of constrictive pericarditis, must be diagnosed at the early stage of its onset

    Technology-based self-management interventions for women with breast cancer: a systematic review

    Get PDF
    Purpose Since technology-based interventions can facilitate convenient access to healthcare for women with breast cancer, it is crucial to understand innovative approaches to maintaining the effectiveness of these interventions. Therefore, we conducted a systematic review of technology-based self-management interventions for women with breast cancer in six countries. We analyzed the characteristics of these interventions and examined their diverse health outcomes. Methods Six databases were systematically searched to extract research articles using the keywords “breast cancer,” “technology,” and “self-management.” The search was carried out up until June 12, 2023. From the 1,288 studies retrieved from the database search, 10 eligible papers were identified based on inclusion/exclusion criteria. Two authors independently extracted and compared the data from these articles, resolving any discrepancies through discussion. Results Most of the 10 studies utilized web- or mobile-based technology, and one used artificial intelligence-based technology. Among the 12 health-related outcome variables, quality of life and symptom distress were the most frequently mentioned, appearing in six articles. Furthermore, an analysis of the intervention programs revealed a variety of common constructs and the involvement of managers in the self-management intervention. Conclusion Incorporating key components such as self-management planning, diary keeping, and communication support in technology-based interventions could significantly improve the self-management process for breast cancer survivors. The practical application of technology has the potential to empower women diagnosed with breast cancer and improve their overall quality of life, by providing timely and sustainable interventions, and by leveraging available resources and tools

    Mild Hypothermia Attenuates Intercellular Adhesion Molecule-1 Induction via Activation of Extracellular Signal-Regulated Kinase-1/2 in a Focal Cerebral Ischemia Model

    Get PDF
    Intercellular adhesion molecule-1 (ICAM-1) in cerebral vascular endothelium induced by ischemic insult triggers leukocyte infiltration and inflammatory reaction. We investigated the mechanism of hypothermic suppression of ICAM-1 in a model of focal cerebral ischemia. Rats underwent 2 hours of middle cerebral artery occlusion and were kept at 37°C or 33°C during occlusion and rewarmed to normal temperature immediately after reperfusion. Under hypothermic condition, robust activation of extracellular signal-regulated kinase-1/2 (ERK1/2) was observed in vascular endothelium of ischemic brain. Hypothermic suppression of ICAM-1 was reversed by ERK1/2 inhibition. Phosphorylation of signal transducer and activator of transcription 3 (STAT3) in ischemic vessel was attenuated by hypothermia. STAT3 inhibitor suppressed ICAM-1 production induced by stroke. ERK1/2 inhibition enhanced phosphorylation and DNA binding activity of STAT3 in hypothermic condition. In this study, we demonstrated that hypothermic suppression of ICAM-1 induction is mediated by enhanced ERK1/2 activation and subsequent attenuation of STAT3 action

    The Dendritic magnetic avalanches in carbon-free MgB2_2 thin films with and without a deposited Au layer

    Full text link
    From the magneto optics images (MOI), the dendritic magnetic avalanche is known to appear dominantly for thin films of the newly discovered MgB2_2. To clarify the origin of this phenomenon, we studied in detail the MOI of carbon-free MgB2_2 thin films with and without a deposited gold layer. The MOI indicated carbon contamination was not the main source of the avalanche. The MOI clearly showed that the deposition of metallic gold deposition on top of a MgB2_2 thin film improved its thermal stability and suppressed the sudden appearance of the dendritic flux avalanche. This is consistent with the previous observation of flux noise in the magnetization.Comment: 9 pages, 4 figeure

    Autonomous control of terminal erythropoiesis via physical interactions among erythroid cells

    Get PDF
    AbstractIn vitro erythropoiesis has been studied extensively for its application in the manufacture of transfusable erythrocytes. Unfortunately, culture conditions have not been as effective as in vivo growth conditions, where bone marrow macrophages are known to be a key regulator of erythropoiesis. This study focused on the fact that some erythroblasts are detached from macrophages and only contact other erythroblasts. We hypothesized that additional factors regulate erythroblasts, likely through either physical contact or secreted factors. To further elucidate these critical factors, human erythroblasts derived from cord blood were cultured at high density to mimic marrow conditions. This growth condition resulted in a significantly increased erythroid enucleation rate and viability. We found several novel contact-related signals in erythroblasts: intercellular adhesion molecule-4 (ICAM-4) and deleted in liver cancer-1 (DLC-1). DLC-1, a Rho-GTPase-activating protein, has not previously been reported in erythroid cells, but its interaction with ICAM-4 was demonstrated here. We further confirmed the presence of a secreted form of human ICAM-4 for the first time. When soluble ICAM-4 was added to media, cell viability and enucleation increased with decreased nuclear dysplasia, suggesting that ICAM-4 is a key factor in contact between cells. These results highlight potential new mechanisms for autonomous control of erythropoiesis. The application of these procedures to erythrocyte manufacturing could enhance in vitro erythrocyte production for clinical use
    corecore