1,235 research outputs found

    Preparation of TiO2 nanotube/nanoparticle composite particles and their applications in dye-sensitized solar cells

    Get PDF
    Efficiency of dye-sensitized solar cells [DSSCs] was enhanced by combining the use of TiO2 nanotubes [TNTs] and nanoparticles. TNTs were fabricated by a sol-gel method, and TiO2 powders were produced through an alkali hydrothermal transformation. DSSCs were constructed using TNTs and TiO2 nanoparticles at various weight percentages. TNTs and TiO2 nanoparticles were coated onto FTO glass by the screen printing method. The DSSCs were fabricated using ruthenium(II) (N-719) and electrolyte (I3/I3-) dyes. The crystalline structure and morphology were characterized by X-ray diffraction and using a scanning electron microscope. The absorption spectra were measured using an UV-Vis spectrometer. The incident photocurrent conversion efficiency was measured using a solar simulator (100 mW/cm2). The DSSCs based on TNT/TiO2 nanoparticle hybrids showed better photovoltaic performance than cells made purely of TiO2 nanoparticles

    Novel application of simultaneous multi-image display during complex robotic abdominal procedures

    Get PDF
    The surgical robot offers the potential to integrate multiple views into the surgical console screen, and for the assistantā€™s monitors to provide real-time views of both fields of operation. This function has the potential to increase patient safety and surgical efficiency during an operation. Herein, we present a novel application of the multi-image display system for simultaneous visualization of endoscopic views during various complex robotic gastrointestinal operations. All operations were performed using the da Vinci Surgical System (Intuitive Surgical, Sunnyvale, CA, USA) with the assistance of Tilepro, multi-input display software, during employment of the intraoperative scopes. Three robotic operations, left hepatectomy with intraoperative common bile duct exploration, low anterior resection, and radical distal subtotal gastrectomy with intracorporeal gastrojejunostomy, were performed by three different surgeons at a tertiary academic medical center. The three complex robotic abdominal operations were successfully completed without difficulty or intraoperative complications. The use of the Tilepro to simultaneously visualize the images from the colonoscope, gastroscope, and choledochoscope made it possible to perform additional intraoperative endoscopic procedures without extra monitors or interference with the operations. We present a novel use of the multi-input display program on the da Vinci Surgical System to facilitate the performance of intraoperative endoscopies during complex robotic operations. Our study offers another potentially beneficial application of the robotic surgery platform toward integration and simplification of combining additional procedures with complex minimally invasive operations

    Transmission Electron Microscopy (TEM) Sample Preparation of Si(1-x)Gex in c-Plane Sapphire Substrate

    Get PDF
    The National Aeronautics and Space Administration-invented X-ray diffraction (XRD) methods, including the total defect density measurement method and the spatial wafer mapping method, have confirmed super hetero epitaxy growth for rhombohedral single crystalline silicon germanium (Si1-xGex) on a c-plane sapphire substrate. However, the XRD method cannot observe the surface morphology or roughness because of the method s limited resolution. Therefore the authors used transmission electron microscopy (TEM) with samples prepared in two ways, the focused ion beam (FIB) method and the tripod method to study the structure between Si1-xGex and sapphire substrate and Si1?xGex itself. The sample preparation for TEM should be as fast as possible so that the sample should contain few or no artifacts induced by the preparation. The standard sample preparation method of mechanical polishing often requires a relatively long ion milling time (several hours), which increases the probability of inducing defects into the sample. The TEM sampling of the Si1-xGex on sapphire is also difficult because of the sapphire s high hardness and mechanical instability. The FIB method and the tripod method eliminate both problems when performing a cross-section TEM sampling of Si1-xGex on c-plane sapphire, which shows the surface morphology, the interface between film and substrate, and the crystal structure of the film. This paper explains the FIB sampling method and the tripod sampling method, and why sampling Si1-xGex, on a sapphire substrate with TEM, is necessary

    Broussonetia papyrifera Root Bark Extract Exhibits Anti-inflammatory Effects on Adipose Tissue and Improves Insulin Sensitivity Potentially Via AMPK Activation

    Get PDF
    The chronic low-grade inflammation in adipose tissue plays a causal role in obesity-induced insulin resistance and its associated pathophysiological consequences. In this study, we investigated the effects of extracts of Broussonetia papyrifera root bark (PRE) and its bioactive components on inflammation and insulin sensitivity. PRE inhibited TNF-alpha-induced NF-kappa B transcriptional activity in the NF-kappa B luciferase assay and pro-inflammatory genes' expression by blocking phosphorylation of I kappa B and NF-kappa B in 3T3-L1 adipocytes, which were mediated by activating AMPK. Ten-week-high fat diet (HFD)-fed C57BL6 male mice treated with PRE had improved glucose intolerance and decreased inflammation in adipose tissue, as indicated by reductions in NF-kappa B phosphorylation and pro-inflammatory genes' expression. Furthermore, PRE activated AMP-activated protein kinase (AMPK) and reduced lipogenic genes' expression in both adipose tissue and liver. Finally, we identified broussoflavonol B (BF) and kazinol J (KJ) as bioactive constituents to suppress pro-inflammatory responses via activating AMPK in 3T3-L1 adipocytes. Taken together, these results indicate the therapeutic potential of PRE, especially BF or KJ, in metabolic diseases such as obesity and type 2 diabetes

    Facial reanimation with masseter nerveā€“innervated free gracilis muscle transfer in established facial palsy patients

    Get PDF
    Background The masseter nerve is a useful donor nerve for reconstruction in patients with established facial palsy, with numerous advantages including low morbidity, a strong motor impulse, high reliability, and fast reinnervation. In this study, we assessed the results of masseter nerveā€“innervated free gracilis muscle transfer in established facial palsy patients. Methods Ten patients with facial palsy who received treatment from January 2015 to January 2017 were enrolled in this study. Three patients received masseter nerveā€“only free gracilis transfer, and seven received double-innervated free gracilis transfer (masseter nerve and a cross-face nerve graft). Patients were evaluated using the Facial Assessment by Computer Evaluation software (FACEgram) to quantify oral commissure excursion and symmetry at rest and when smiling after muscle transfer. Results The mean time between surgery and initial movement was roughly 167.7 days. A statistically significant increase in excursion at rest and when smiling was seen after muscle transfer. There was a significant increase in the distance of oral commissure excursion at rest and when smiling. A statistically significant increase was observed in symmetry when smiling. Terzisā€™ functional and aesthetic grading scores showed significant improvements postoperatively. Conclusions Masseter nerve innervation is a good option with many uses in in established facial palsy patients. For some conditions, it is the first-line treatment. Free gracilis muscle transfer using the masseter nerve has excellent results with good symmetry and an effective degree of recovery
    • ā€¦
    corecore