6,473 research outputs found

    Irregular conformal block, spectral curve and flow equations

    Full text link
    Irregular conformal block is motivated by the Argyres-Douglas type of N=2 super conformal gauge theory. We investigate the classical/NS limit of the irregular conformal block using spectral curve on a Riemann surface with irregular punctures, which is equivalent to the loop equation of irregular matrix model. The spectral curve is reduced to the second order (Virasoro symmetry, SU(2)SU(2) for the gauge theory) and third order (W3W_3 symmetry, SU(3)SU(3)) differential equations of a polynomial with finite degree. The Virasoro and W symmetry generate flow equations in the spectral curve and determine the irregular conformal block, hence the partition function of the Argyres-Douglas theory ala AGT conjecture.Comment: 35 pages; v2: 38 pages, section 4 and references added, minor change

    Virasoro irregular conformal block and beta deformed random matrix model

    Get PDF
    Virasoro irregular conformal block is presented as the expectation value of Jack-polynomials of the beta-deformed Penner-type matrix model and is compared with the inner product of Gaiotto states with arbitrary rank. It is confirmed that there are non-trivial modifications of the Gaiotto states due to the normalization of the states. The relation between the two is explicitly checked for rank 2 irregular conformal block.Comment: 13 pages, 1 figur

    Advancing Sustainable 3D Printing: Harnessing the Potential of Wastewater Sludge Incineration Ash for Composite Material Development and Practical Applications

    Get PDF
    This study delves into the unexplored fusion of wastewater sludge incineration ash (WSIA) and 3D printing, uncovering novel possibilities at the crossroads of environmental engineering and advanced manufacturing. The investigation centers on the integration of WSIA within the additive manufacturing framework, specifically material extrusion-fused deposition modeling (FDM). The study focuses on composite materials blending WSIA with commercial thermoplastics like ABS and PC, meticulously analyzing their physical, chemical, and mechanical attributes. Notably, the research highlights the potential for heightened mechanical strength in ABS composite materials, suggesting applications beyond 3D printing. Emphasizing long-term sustainability, the study advocates for the adoption of biodegradable plastics and underscores the importance of continuous research, mass production feasibility, and regulatory adaptations to fully unlock WSIA’s potential. This synergy of innovation marries environmental awareness with technological progress, offering a harmonious trajectory to reshape manufacturing paradigms and nurture sustainable development. The study’s outcomes present promising avenues for redefining the construction industry and advancing environmental conservation

    Sleeve Lobectomy as an Alternative Procedure to Pneumonectomy for Non-small Cell Lung Cancer

    Get PDF
    IntroductionThe aim of this study is to compare the outcomes of sleeve lobectomy (SL) and pneumonectomy (PN) and to determine which one is more acceptable standard procedure for patients with non-small cell lung cancer.MethodsFrom 1996 to 2005, 424 patients underwent SL (n = 157) and PN (n = 267) in our institution. Propensity score matching analysis was performed to compare these two groups for mortality, morbidity, survival, recurrence, and postoperative pulmonary function.ResultsIn each group, 105 patients were eligible for analysis. The operative mortality was lower in the SL group (1.0%) than the PN group (8.6%), (p < 0.0001). The morbidity was similar (33.4% versus 29.5%, p = 0.376). The 5-year survival was lower in the PN group (PN, 32.14% versus SL, 58.43%, p = 0.0002). The recurrence pattern (locoregional versus distant) did not differ between two groups (p = 0.180). The mean actual postoperative first second forced expiratory volume in the patients underwent SL was 2.05 ± 0.55 liter, which increased by 7.9% compared with the predicted-postoperative first second forced expiratory volume.ConclusionsOur results showed that the SL can be performed with low operative risk and may offer superior survival and better postoperative pulmonary function compared with the PN in selected patients. If anatomically feasible, a SL must be considered as a favorable alternative to PN in patients with non-small cell lung cancer

    DNA microarrays on a dendron-modified surface improve significantly the detection of single nucleotide variations in the p53 gene

    Get PDF
    Selectivity and sensitivity in the detection of single nucleotide polymorphisms (SNPs) are among most important attributes to determine the performance of DNA microarrays. We previously reported the generation of a novel mesospaced surface prepared by applying dendron molecules on the solid surface. DNA microarrays that were fabricated on the dendron-modified surface exhibited outstanding performance for the detection of single nucleotide variation in the synthetic oligonucleotide DNA. DNA microarrays on the dendron-modified surface were subjected to the detection of single nucleotide variations in the exons 5–8 of the p53 gene in genomic DNAs from cancer cell lines. DNA microarrays on the dendron-modified surface clearly discriminated single nucleotide variations in hotspot codons with high selectivity and sensitivity. The ratio between the fluorescence intensity of perfectly matched duplexes and that of single nucleotide mismatched duplexes was >5–100 without sacrificing signal intensity. Our results showed that the outstanding performance of DNA microarrays fabricated on the dendron-modified surface is strongly related to novel properties of the dendron molecule, which has the conical structure allowing mesospacing between the capture probes. Our microarrays on the dendron-modified surface can reduce the steric hindrance not only between the solid surface and target DNA, but also among immobilized capture probes enabling the hybridization process on the surface to be very effective. Our DNA microarrays on the dendron-modified surface could be applied to various analyses that require accurate detection of SNPs

    Image-level trajectory inference of tau pathology using variational autoencoder for Flortaucipir PET.

    Get PDF
    PURPOSE Alzheimer's disease (AD) studies revealed that abnormal deposition of tau spreads in a specific spatial pattern, namely Braak stage. However, Braak staging is based on post mortem brains, each of which represents the cross section of the tau trajectory in disease progression, and numerous studies were reported that do not conform to that model. This study thus aimed to identify the tau trajectory and quantify the tau progression in a data-driven approach with the continuous latent space learned by variational autoencoder (VAE). METHODS A total of 1080 [18F]Flortaucipir brain positron emission tomography (PET) images were collected from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. VAE was built to compress the hidden features from tau images in latent space. Hierarchical agglomerative clustering and minimum spanning tree (MST) were applied to organize the features and calibrate them to the tau progression, thus deriving pseudo-time. The image-level tau trajectory was inferred by continuously sampling across the calibrated latent features. We assessed the pseudo-time with regard to tau standardized uptake value ratio (SUVr) in AD-vulnerable regions, amyloid deposit, glucose metabolism, cognitive scores, and clinical diagnosis. RESULTS We identified four clusters that plausibly capture certain stages of AD and organized the clusters in the latent space. The inferred tau trajectory agreed with the Braak staging. According to the derived pseudo-time, tau first deposits in the parahippocampal and amygdala, and then spreads to the fusiform, inferior temporal lobe, and posterior cingulate. Prior to the regional tau deposition, amyloid accumulates first. CONCLUSION The spatiotemporal trajectory of tau progression inferred in this study was consistent with Braak staging. The profile of other biomarkers in disease progression agreed well with previous findings. We addressed that this approach additionally has the potential to quantify tau progression as a continuous variable by taking a whole-brain tau image into account

    Lung cancer in never-smoker Asian females is driven by oncogenic mutations, most often involving EGFR

    Get PDF
    The aim of this study was to determine the distribution of known oncogenic driver mutations in female never-smoker Asian patients with lung adenocarcinoma. We analyzed 214 mutations across 26 lung cancer-associated genes and three fusion genes using the MassARRAY® LungCarta Panel and the ALK, ROS1, and RET fusion assays in 198 consecutively resected lung adenocarcinomas from never-smoker females at a single institution. EGFR mutation, which was the most frequent driver gene mutation, was detected in 124 (63%) cases. Mutation of ALK, KRAS, PIK3CA, ERBB2, BRAF, ROS1, and RET genesoccurred in 7%, 4%, 2.5%, 1.5%, 1%, 1%, and 1% of cases, respectively. Thus, 79% of lung adenocarcinomas from never-smoker females harbored well-known oncogenic mutations. Mucinous adenocarcinomas tended to have a lower frequency of known driver gene mutations than other histologic subtypes. EGFR mutation was associated with older age and a predominantly acinar pattern, while ALK rearrangement was associated with younger age and a predominantly solid pattern. Lung cancer in never-smoker Asian females is a distinct entity, with the majority of these cancers developing from oncogenic mutations

    Proteomic and biochemical analyses reveal the activation of unfolded protein response, ERK-1/2 and ribosomal protein S6 signaling in experimental autoimmune myocarditis rat model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To investigate the molecular and cellular pathogenesis underlying myocarditis, we used an experimental autoimmune myocarditis (EAM)-induced heart failure rat model that represents T cell mediated postinflammatory heart disorders.</p> <p>Results</p> <p>By performing unbiased 2-dimensional electrophoresis of protein extracts from control rat heart tissues and EAM rat heart tissues, followed by nano-HPLC-ESI-QIT-MS, 67 proteins were identified from 71 spots that exhibited significantly altered expression levels. The majority of up-regulated proteins were confidently associated with unfolded protein responses (UPR), while the majority of down-regulated proteins were involved with the generation of precursor metabolites and energy metabolism in mitochondria. Although there was no difference in AKT signaling between EAM rat heart tissues and control rat heart tissues, the amounts and activities of extracellular signal-regulated kinase (ERK)-1/2 and ribosomal protein S6 (rpS6) were significantly increased. By comparing our data with the previously reported myocardial proteome of the Coxsackie viruses of group B (CVB)-mediated myocarditis model, we found that UPR-related proteins were commonly up-regulated in two murine myocarditis models. Even though only two out of 29 down-regulated proteins in EAM rat heart tissues were also dysregulated in CVB-infected rat heart tissues, other proteins known to be involved with the generation of precursor metabolites and energy metabolism in mitochondria were also dysregulated in CVB-mediated myocarditis rat heart tissues, suggesting that impairment of mitochondrial functions may be a common underlying mechanism of the two murine myocarditis models.</p> <p>Conclusions</p> <p>UPR, ERK-1/2 and S6RP signaling were activated in both EAM- and CVB-induced myocarditis murine models. Thus, the conserved components of signaling pathways in two murine models of acute myocarditis could be targets for developing new therapeutic drugs or methods aimed at treating enigmatic myocarditis.</p
    corecore