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1. Introduction

Virasoro irregular module appears in connection with the N = 2
super-Yang–Mills theory [1]. The irregular module so-called Gaiotto 
state or Whittaker state [2] is the simultaneous eigenstate of the 
positive Virasoro generators. The irregular module is constructed as 
the superposition of one primary state and its descendents [1,3].

On the other hand, the irregular module is also constructed 
as the colliding limit of primary operators as shown in [4]. The 
colliding limit is the fusion of primary vertex operators with the 
addition of Heisenberg-coherent modes. As a result, the state be-
comes the simultaneous eigenstate of positive Virasoro operators, 
i.e. the irregular module.

Will the two different approaches produce the same result? In 
this paper we like to answer this question. We will confine our-
selves to the case with the Gaiotto sate |In〉 of rank n ≥ 1, simul-
taneous eigenstate of Ln, Ln+1, · · · , L2n . In Section 2, Gaiotto state 
of rank n constructed in [5] is summarized and its inner product 
is investigated. The inner product is important since it contains all 
the information of descendents in the Gaiotto state. In Section 3, 
a differently looking form of the inner product is provided using 
the colliding limit of the regular conformal correlation. The result 
is given in terms of the beta-deformed Penner-type matrix model. 
Since the random matrix model is the result of the fusion of pri-
mary operators, the partition function should produce the colliding 
limit of the conformal block, which we call the (two-point) irreg-
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ular conformal block (ICB). A simple and clear way to obtain ICB 
is presented with the help of the loop equation and ICB is com-
pared with the inner product of Gaiotto states. We pinpoint the 
non-trivial modification from the Gaiotto state in [5]. The sum-
mary and discussion are given in Section 4.

2. Virasoro irregular module and its inner product

The irregular state is explicitly constructed for rank 1 in [1,3]
and for rank n in [5]. We will use the convention |G̃2n〉 for Gaiotto 
state with rank n following [5] (another form is also found in [6]), 
whereas we reserve |In〉 for the state obtained from the colliding 
limit given in [4]

|G̃2n〉 =
∑

�,Y ,�p

Λ�/n

{
n−1∏
i=1

a
�2n−i
i b�i

i

}
m�n Q −1

Δ

× (
1�1 2�2 · · · (2n − 1)�2n−1(2n)�2n ; Y

)
L−Y |Δ〉, (2.1)

where L−Y = L+
Y represents the product of lowering operators and 

LY = L�1
1 L�2

2 · · · L�s
s . |Δ〉 is the primary state with conformal dimen-

sion Δ and Q Δ(Y ; Y ′) is the shorthand notation of 〈Δ|LY ′ L−Y |Δ〉. 
The summation � runs from 0 to ∞, Y and �p maintaining |Y | = �

and 
∑

p�p = �.
One can confirm that |G̃2n〉 is the simultaneous eigenstate; 

Lk|G̃2n〉 = Λk/na2n−s for n < k ≤ 2n and Ln|G̃2n〉 = Λm|G̃2n〉 from 
the expectation values for W = 1�1 2�2 · · · (2n)�2n ,

〈Δ|LW L2n−s|G̃2n〉 = Λ2n−s/nas〈Δ|LW |G̃2n〉 for 0 ≤ s < n,

〈Δ|LW Ln|G̃2n〉 = Λm〈Δ|LW |G̃2n〉, (2.2)
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with a0 ≡ 1. Here, the eigenvalues are given in terms of Λ, ai ’s and 
m only. The other coefficients bi ’s are not fixed by the eigenvalues 
but enter in the inner product since

〈Δ|LW |G̃2n〉 = Λ�/n

{
n−1∏
i=1

a
�2n−i
i b�i

i

}
m�n . (2.3)

Note that the inner product contains all the information on the 
descendents. Thus, one may assume that bi ’s are related with the 
contribution of descendents. To find out further information of bi ’s, 
we need to resort to other procedures.

3. Irregular conformal block and colliding limit

The inner product can be evaluated using the idea of colliding 
limit of the multi-point regular conformal correlation introduced in 
[7,4,6]. We follow the procedure appeared in [9]. Let us consider 
the conformal part of n + 2 primary operator correlation with N
screening operators. If one fuses n + 1 operators at the origin with 
the colliding limit, one ends up with the β-deformed Penner-type 
partition function

Z(0:n)

(
c0; {ck}

)=
∫ N∏

i=1

dλiΔ(λ)2βe−
√

β
g

∑
i V (λi;c0,{ck}), (3.1)

where Δ(λ) =∏
i< j(λi − λ j) is the Vandermonde determinant and 

β = −b2 (or b = i
√

β ) with the screening charge b. The Penner-
type potential is given as the sum of logarithmic and inverse power 
terms

1

h̄
V (0:n)

(
z; c0, {ck}

)= −c0 log z +
n∑

k=1

ck

kzk
. (3.2)

(One may identify ck = ∑n
r=1 αr(zr)

k where αr is the Liouville 
charge of the primary operator at zr . Since the colliding limit cor-
responds to zr → 0 and αr → ∞ so that ck is ensured finite, one 
may consider the limit as the ideal multi-pole expansion. In addi-
tion, we use the notation g = ih̄/2 so that 

√
β/g = −2b/h̄.)

We remark by passing that the integration range of the parti-
tion function is naturally given as 0 to ∞. Before the colliding limit 
one usually chooses the integration range between the positions of 
the primary operators. For example, one may choose the position 
of the primary operators as (0, z1 = z, z2 = 1, ∞) and chooses 
the integration ranges from 0 to z1 or from z2 to ∞. However, to 
have the proper colliding limit, one needs to choose the integra-
tion range from z1 to z2 and take the limit z1 → 0 and z2 → ∞.

Let us introduce the primary state |Δ〉 with conformal dimen-
sion Δ = c0(Q − c0) in the presence of the background charge Q . 
Then 〈Δ| is the primary state with the conformal dimension 
Δ = c∞(Q − c∞) where c∞ is fixed by the neutrality condition 
c0 +c∞ +bN = Q . The colliding limit introduces the irregular state 
|In〉 and the partition function is identified with the inner product 
Z(0:n)(c0; {ck}) = 〈Δ|In〉. This ensures that the irregular state |In〉 is 
dependent on the set of coefficients {c1, · · · cn}. In fact, it is demon-
strated in [4] that the coefficient ck is the coherent coordinate of 
Heisenberg mode ak , ak|In〉 = ck|In〉.

Since |In〉 is the simultaneous eigenstate of Ln, Ln+1, · · · , L2n

generators, their eigenvalues can be parametrized as Λk = (k +
1)Q ck −∑k

p=0 cpck−p with k = n, · · · , 2n. However, the eigenstate 
condition is not enough to fix |In〉 as seen in (2.3) and needs the 
information on the descendents in |In〉. Note that the lower posi-
tive generators Lk (k = 1, · · · , n − 1) obeying [Lk, Ln] = (k − n)Lk+n . 
An easy way to realize this non-commutative properties is to rep-
resent Lk as the differential form of the coherent coordinates ck ’s. 
Fig. 1. Schematic diagram of 〈Im|In〉 from the colliding limit.

Putting Lk = Λk + vk , one has

vk ≡
∑
�∈N

�c�+k
∂

∂c�

(3.3)

and the consistency condition

[vk, v�]〈Δ|In〉 = (� − k)v�+k〈Δ|In〉. (3.4)

It should be noted that the Gaiotto state |G̃2n〉 in (2.1) satisfies the 
consistence condition trivially since vk〈Δ|G̃2n〉 = 0.

One can find the parameter dependence for rank 1 simply by 
scaling the integration variable λi → c1λi to get Z(0:1)(c0; c1) =
c−bN(bN+2c0−Q )

1 Z(0:1)(c0; 1). However, for the rank higher than 1, 
one needs more complicated process. The easiest way to find the 
parameter dependence is to use the loop equation of the matrix 
model [8]. The loop equation has the form [9]

n−1∑
k=0

vk(log(Z(0:n)))

z2+k
= −ξ(z)

h̄2
, (3.5)

where v0 conforms to the notation of (3.3), v0 ≡∑
�∈N � c�

∂
∂c�

and 
ξ(z) = 4W (z)2 − 4W (z)V ′(z) + 2h̄Q W ′(z) − h̄2W (z, z). Here W (z)
is the resolvent W (z) = h̄b/2〈1/(z − λi)〉, and W (z, z) is the con-
nected two-point resolvent W (z, z) = −b2〈∑i, j 1/(z−λi)(z−λ j)〉c . 
The prime stands for the differentiation.

One may view that the loop equation provides the energy 
momentum expectation value ϕ2(z), which encodes the Seiberg–
Witten curve [10–12,1]. Putting ϕ2(z) = ∑

n≤k≤2n Λk/z2+k +∑
0≤kn−1 Lk/z2+k , one has the relation with the resolvent accord-

ing to the loop equation: ϕ2(z) = (2W − V ′)2 + h̄Q (2W − V ′)′ −
h̄2W (z, z). Large z expansion of the loop equation eventually re-
duces to the flow equation

vk(log Z(0:n)) = d(0:n)

k

({ck}
)
, (3.6)

where d(0:n)

k is the moment of ξ(z); 
∮

dzz1+kξ(z)/(−h̄22π i). The 
flow equation satisfies the consistency condition (3.4) automati-
cally whose explicit solutions can be found in [9,13].

The idea can be extended to find the inner product 〈Im|In〉 from 
the colliding limit of (m +n + 2)-point correlation (see Fig. 1). Fus-
ing n + 1 primary operators at the origin and m + 1 operators at 
infinity, one has the partition function Z(m:n)

Z(m:n)

(
c0; {ck}; {c−�}

)
=
∫ N∏

i=1

dλiΔ(λ)2βe−
√

β
g

∑
i V (m:n)(λi;c0,{ck},{c−�})

1

h̄
V (m:n)

(
z; c0, {ck}, {c−�}

)
= −c0 log z +

n∑
k=1

(
ck

kzk

)
+

m∑
�=1

(
c−�z�

�

)
. (3.7)

The partition function is related with the inner product 〈Im|In〉. 
However, there is a subtlety, so-called U (1) contribution. This 
factor comes from the limiting procedure: It is noted that as 
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za → ∞ and zb → 0 one has the finite contribution 
∏

a,b(1 −
zb/za)

−2αaαb → eζ(m:n) , where ζ(m:n) = ∑min(m,n)

k 2ckc−k/k. There-
fore, one has the inner product of the form 〈Im|In〉 = eζ(m:n) Z(m:n) ×
(c0; {ck}; {c−�}).

The inner product between the two irregular modules inher-
its the property of the conformal block of the regular multi-
correlation. Considering the colliding limit, one may define the 
irregular conformal block F (m:n)

Δ as the inner product of the ir-

regular modules with appropriate normalization: F (m:n)
Δ = 〈Im|In〉/

(〈Im|Δ〉〈Δ|In〉) whose conformal dimension is given as Δ = (c0 +
N0)(Q − c0 − N0) = (c∞ + N∞)(Q − c∞ − N∞) [13].

In this spirit, one may naturally define ICB using the β de-
formed Penner-type matrix model as the following:

F (m:n)
Δ

({c−�} : {ck}
)= eζ(m:n) Z(m:n)(c0; {ck}; {c−�})

Z(0:n)(c0; {ck})Z(0:m)(c∞;{c−�}) , (3.8)

where Z(0:n)(c0; {ck}) and Z(0:m)(c∞; {c−�}) provide the proper nor-
malization for the irregular conformal block. Here we use the 
change of variable λi → 1/λi to express 〈Im|Δ〉 as Z(0:m)(c∞; {c−�}).

To evaluate ICB we note that the potential V (m:n) contains the 
information of the irregular module at the origin and at infinity 
at the same time. Therefore, each module can be derived if one 
views the same potential on a different footing. The information of 
the irregular module at the origin is obtained if one regards the 
potential V 0 = V (0:n)({λi}; c0, {ck}) as the reference one and ΔV 0
as its perturbation:

1

h̄
V 0 =

N0∑
I=1

(
−c0 log λI +

n∑
k=1

ck

k
λ−k

I

)
;

1

h̄
ΔV 0 =

N0∑
I=1

(
n∑

�=1

c−�

�
λ�

I

)
. (3.9)

That is, V 0 is the potential for the partition function Z(0:n) with 
N0(≤ N) number of screening operators. At infinity one has the 
reference potential 

∑N∞
J=1(−c0 log λ J +∑n

�=1 c−�λ
�
i /�) and its per-

turbation 
∑N∞

J=1(
∑n

k=1 ckλ
−k
J /k). We introduce the number N∞ of 

screening operators at infinity so that N∞ + N0 = N . One may 
rewrite the potential in a familiar form if one changes the vari-
able λ J → 1/μ J to get the equivalent potential

1

h̄
V∞ =

N∞∑
J=1

(
−c∞ logμ J +

m∑
�=1

c−�

�
μ−�

J

)
;

1

h̄
ΔV∞ =

N∞∑
J=1

(
n∑

k=1

ck

k
μk

J

)
. (3.10)

In this way the perturbative potential and the cross terms in the 
Vandermonde determinant provide ICB:

F (m:n)
Δ

({c−�} : {ck}
)

= eζ(m:n)

〈∏
I, J

(1 − λIμ J )
2βe−

√
β

g (ΔV 0(λI )+ΔV∞(μ J ))

〉
, (3.11)

where the bracket denotes the expectation value using the refer-
ence partition function:〈
O(λI )

〉≡ 〈O〉+
= (

Z(0:n)

(
c0; {ck}

))−1

×
∫ N0∏

dλIΔ(λ)2βO(λI )e−
√

β
g

∑
i V 0(λI ),
I=1
〈
O(μ J )

〉≡ 〈O〉−
= (

Z(0:m)

(
c∞;{c�}

))−1

×
∫ N∞∏

J=1

dμ J Δ(μ)2βO(μ J )e−
√

β
g

∑
i V∞(μ J ), (3.12)

which can be regarded as the generalization of Selberg integral [14,
15]. One may put ICB in (3.11) compactly in terms of Jack polyno-
mial [16–18]. Putting pk = ∑

I λk
I and p′

k = ∑
J μ

k
J , one has the 

identity∏
I, J

(1 − λIμ J )
2βe−

√
β

g (ΔV 0(λI )+ΔV∞(μ J ))

= exp

{
−β

∞∑
k=1

1

k
pk
(

p′
k − c̃−k

)}

× exp

{
−β

∞∑
k=1

1

k
p′

k(pk − c̃k)

}
, (3.13)

where c̃±k = i2c±k/
√

β = −2c±k/b (with c̃k = 0 for k > n and 
c̃−k = 0 for k > m). Using the Cauchy–Stanley identity [19,20]

eβ
∑

k≥1
1
k pk p′

k =∑
R j(β)

R (p) j(β)
R (p′), one has ICB as

F (m:n)
Δ = eζ(m:n)

∑
Y ,W

〈
j(β)
Y (pk) j(β)

W (−pk + c̃k)
〉
+

× 〈
j(β)
Y

(−p′
k + c̃−k

)
j(β)
W

(
p′

k

)〉
−. (3.14)

The explicit form of the general ICB is not available yet. Here we 
check a few non-trivial terms using the resolvent in the loop equa-
tion of the reference partition function. Each term can be obtained 
from the large z expansion of the resolvent and ICB in power of 
η0 ≡ c1c−1, which is compatible with the Young diagram expan-
sion. For rank 1, up to order O(η2

0) one has

F (1:1)
Δ

= 1 + η0
2c̄0c̄∞

Δ

+ η2
0

4c̄2
0c̄2∞c/Δ + 4Δ + 2 + 12(c̄2

0 + c̄2∞) + 32c̄2
0c̄2∞

c + 2cΔ + 2Δ(8Δ − 5)
,

(3.15)

where c̄0 = Q − c0, c̄∞ = Q − c∞ , and c = 1 + 6Q 2. Comparing 
this with the Gaiotto inner product up to O(ΛΛ′)2 (using (2.1)
with 〈G̃2| under the primed notation)

〈G̃2|G̃2〉
= 1 + ΛΛ′ mm′

2Δ

+ (
ΛΛ′)2 m2m′ 2c/4Δ + 4Δ + 2 − 3(m2 + m′ 2) + 2m2m′ 2

c + 2cΔ + 2Δ(8Δ − 5)
,

(3.16)

we find Λ2 = −c2
1 (Λ′ 2 = −c2−1) and mΛ = 2c1c̄0 (m′Λ′ =

2c−1c̄∞), consistent with the eigenvalues of L2 and L1.
Non-trivial checks are given for rank 2. Matrix model provides 

F (1:2)
Δ up to O(η2

0)

F (1:2)
Δ = 1 + η0

b̄1c̄∞
Δ

+ η2
0

cc̄2∞b̄2/Δ + (2 + 12c̄2∞ + 4Δ)(1 − c2(Q + 2c̄0)/c2
1) + (3 + 8c̄2∞)b̄2

c + 2cΔ + 2Δ(8Δ − 5)
,

(3.17)
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where c1b̄1 = (d(0:2)
1 +2c̄0c1), c2

1b̄2 = (d(0:2)
1 +2c̄0c1)

2 +c2∂d(0:2)
1 /∂c1. 

The explicit form of d(0;2)
1 is given in powers of η1 ≡ c2/c2

1 [9,13]

d(0:2)
1

c1
= −2bN(2)c0 + [−bN0(bN0 + 2c0 − Q )

+ bN(2)(3bN(2) + 4c0 − 3Q )
]
η1 +O

(
η2

1

)
, (3.18)

where N(1) and N(2) are filling fractions of two cuts, N0 = N(1) +
N(2) . On the other hand, one has the Gaiotto inner product up to 
O(Λ′√Λ)2

〈G̃2|G̃4〉
= 1 + Λ′√Λ

m′b1

2Δ
+ (

Λ′√Λ
)2

× cm′ 2b2
1/(4Δ) + (2 − 3m′ 2 + 4Δ)m + (−3 + 2m′ 2)b2

1

c + 2cΔ + 2Δ(8Δ − 5)
.

(3.19)

Comparing the two we obtain the parameter relation Λm = −c2
1 +

2c2(Q /2 + c̄0), the eigenvalues of L2. However in (3.17) b̄2 is 
not b̄2

1, which is different from (3.19). Therefore, (
√

Λb1)
� can-

not be considered as a simple constant but should be of the form 
(c1b̄1)

� = 1
Z(0:2)

(Λ1 + v1)
� Z(0:2) .

One can further check this relation holds for F (2:2)
Δ if the 

Gaiotto inner product

〈G̃4|G̃4〉 = 1 + (
Λ′Λ

)1/2 b1b′
1

2Δ
+ Λ′Λ

c + 2cΔ + 2Δ(8Δ − 5)

[
c b2

1b′2
1

4Δ

+ 2
(
b2

1b′2
1 + mm′)− 3

(
mb′2

1 + 3m′b2
1

)+ 4Δmm′
]

+ (
Λ′Λ

)3/2
(3.20)

is compared with its matrix result

F (2:2)
Δ = 1 + b̄1b̄−1

2Δ
η0 + η2

0

c + 2cΔ + 2Δ(8Δ − 5)

[
cb̄2

1b̄2−1

4Δ

+ 2
(
b̄2

1b̄2−1 + (
1 − c2(Q + 2c̄0)/c2

1

)
× (

1 − c−2(Q + 2c̄∞)/c2−1

))
+ 3

((
1 − c2(Q + 2c̄0)/c2

1

)
b̄2−1

+ (
1 − c−2(Q + 2c̄∞)/c2−1

)
b̄2

1

)
+ 4Δ

(
1 − c2(Q + 2c̄0)/c2

1

)
× (

1 − c−2(Q + 2c̄∞)/c2−1

)]+O
(
η3

0

)
, (3.21)

where c−1b̄−1 = (d(0:2)
−1 +2c̄∞c−1) and c2−1b̄2−1 = (d(0:2)

−1 +2c̄∞c−1)
2

+ c−2∂d(0:2)
−1 /∂c−1. From this we confirm the parameter relation 

at infinity in the same fashion at the origin; Λ′m′ = −c2−1 +
2c−2(Q /2 + c̄∞) and b′

1 with b̄−1 with (c−1b̄−1)
� = 1

Z(0:2)
(Λ−1 +

v−1)
� Z(0:2) .

4. Summary and discussion

We found the Virasoro irregular conformal block using the beta 
deformed Penner type matrix model and presented the result in 
terms of the expectation values of the Jack polynomial (3.14). We 
checked ICB explicitly for a few ranks and compare with the in-
ner product of Gaiotto state proposed by [5]. There is a non-trivial 
modification between the two results due to the difference of the 
normalization as is suggested in [5].

Referring to the explicit check given for the rank 1 and 2, 
we can clearly see that the Gaiotto state needs to be modi-
fied to represent the colliding limit of the conformal correla-
tion. Note that the expectation value 〈Δ|L�k

k |G̃2n〉 is (Λk/nbk)
�k

according to (2.3). On the other hand, |In〉 has the L�k
k expecta-

tion value ((Λk + vk)
�k Z(0:n))/Z(0:n) . Therefore, one may conclude 

that the Gaiotto state should be modified by using the coeffi-
cient relation (Λk/nbk)

�k → ((Λk + vk)
�k Z(0:n))/Z(0:n) . Considering 

〈Δ|L�1
1 L�2

2 |In〉 = (Λ2 + v2)
�2 (Λ1 + v1)

�1 Z(0:n) , one has

〈Δ|LW |In〉 = Λ�/nm�n

{
n−1∏
i=1

a
�2n−i
i

}
× {

(Λn−1 + vn−1)
�n−1 · · · (Λ1 + v1)

�1 Z(0:n)

}
(4.1)

with proper ordering. The case of rank 1 is trivial since there is no 
bk ’s.

In the paper we consider mainly the two-point ICB. One may 
extend the result to N-point ICB 〈∏N

A=1 ImA (zA)〉 by generalizing 
the potential in (3.7):

1

h̄
V ({mA})

(
z;{c(A)

0

}
,
{

c(A)

k

})
=

N∑
A=1

{
−c(A)

0 log(z − zA) +
nA∑

k=1

(
c(A)

k

k(z − zA)k

)}
. (4.2)

ICB will be given with the appropriate normalization at each point, 
i.e., by treating the potential as the sum of the reference potential 
and perturbation at each point.

Noting the Penner-type matrix model provides ICB, one may 
wonder if there exists another systematic way of obtaining the ir-
regular conformal block of arbitrary rank from regular conformal 
block, as seen in the rank 1 case [3] or for SU(N) in [21] by de-
coupling a certain large mass limit. However, such a decoupling 
limit is not achieved yet for rank greater than 1. It will be inter-
esting to find the limit using the relation of the Selberg integral 
with the Jack polynomials to have (3.14).

In addition, one may have the colliding limit for W-algebraic 
symmetry as done in [5] using SU(N) Toda theories. The corre-
sponding matrix model is straight-forward generalization of the 
Virasoro symmetric case for SU(N). Making use of [22], we have

Z SU(N)
(m:n) =

∫ N−1∏
a=1

Na∏
i=1

dλ
(a)
i Δ

(
λ(a)

)2β
N−2∏
a=1

Δ
(
λ(a), λ(a+1)

)−β
e−

√
β

g V
,

1

h̄
V =

N−1∑
a=1

Na∑
i=1

[
−c(a)

0 logλ +
n∑

k=1

(
c(a)

k

kλk

)
+

m∑
�=1

(
c(a)
−�λ

�

�

)]
, (4.3)

with c(a)

k = ∑n
r=1(αr, ea)(zr)

k , and c(a)
−� = ∑m

r=1(α̃r, ea)(z̃r)
−� . Here 

ea are the simple roots of SU(N). This leads to the SU(N) ICB:

F (m:n)
Δ = eζ(m:n)

∑
Y

〈
N∏

a=1

j(β)
Ya

(
p(a−1)

k − p(a)

k + c̃(a)

k

)〉
+

×
〈

N∏
a=1

j(β)
Ya

(
p′(a)

k − p′ (a−1)

k + c̃(a)

−k

)〉
−
, (4.4)

with c̃(a)

−k = 2 
∑a−1

s=1 c(s)
−k/b, c̃(N−a)

k = −2 
∑a−1

s=1 c(N−s)
k /b, p(0)

k = p(N)

k =
p′ (0)

k = p′ (N)

k ≡ 0, and 〈O〉± are generalizations of AN−1 Selberg 
integral, expectation values of the matrix model with the refer-
ence potential, part of (4.3). U (1) factor ζ(m:n) is also summed 
over SU(N) index a.
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