54 research outputs found

    Compact Three Mirror Anastigmat Space Telescope Design using 6.5m Monolithic Primary Mirror

    Full text link
    The utilization of a 6.5m monolithic primary mirror in a compact three-mirror anastigmat (TMA) telescope design offers unprecedented capabilities to accommodate various next generation science instruments. This design enables the rapid and efficient development of a large aperture telescope without segmented mirrors while maintaining a compact overall form factor. With its exceptional photon collection area and diffraction-limited resolving power, the TMA design is ideally suited for both the ground and space active/adaptive optics concepts, which require the capture of natural guide stars within the field of view for wavefront measurement to correct for misalignments and shape deformation caused by thermal gradients. The wide field of view requirement is based on a statistical analysis of bright natural guide stars available during observation. The primary mirror clear aperture, compactness requirement, and detector pixel sizes led to the choice of TMA over simpler two-mirror solutions like Ritchey-Chretien (RC) telescopes, and the TMA design offers superior diffraction-limited performance across the entire field of view. The standard conic surfaces applied to all three mirrors (M1, M2, and M3) simplify the optical fabrication, testing, and alignment process. Additionally, the TMA design is more tolerant than RC telescopes. Stray light control is critical for UV science instrumentation, and the field stop and Lyot stop are conveniently located in the TMA design for this purpose.Comment: Presented at SPIE, Optics+Photonics 2023, Astronomical Optics: Design, Manufacture, and Test of Space and Ground Systems IV in San Diego, CA, US

    Analysis of active optics correction for a large honeycomb mirror

    Full text link
    In the development of space-based large telescope systems, having the capability to perform active optics correction allows correcting wavefront aberrations caused by thermal perturbations so as to achieve diffraction-limited performance with relaxed stability requirements. We present a method of active optics correction used for current ground-based telescopes and simulate its effectiveness for a large honeycomb primary mirror in space. We use a finite-element model of the telescope to predict misalignments of the optics and primary mirror surface errors due to thermal gradients. These predicted surface error data are plugged into a Zemax ray trace analysis to produce wavefront error maps at the image plane. For our analysis, we assume that tilt, focus and coma in the wavefront error are corrected by adjusting the pointing of the telescope and moving the secondary mirror. Remaining mid- to high-order errors are corrected through physically bending the primary mirror with actuators. The influences of individual actuators are combined to form bending modes that increase in stiffness from low-order to high-order correction. The number of modes used is a variable that determines the accuracy of correction and magnitude of forces. We explore the degree of correction that can be made within limits on actuator force capacity and stress in the mirror. While remaining within these physical limits, we are able to demonstrate sub-25 nm RMS surface error over 30 hours of simulated data. The results from this simulation will be part of an end-to-end simulation of telescope optical performance that includes dynamic perturbations, wavefront sensing, and active control of alignment and mirror shape with realistic actuator performance.Comment: 8 pages, 6 figures, presented at SPIE Optics + Photonics 202

    Approaches to developing tolerance and error budget for active three mirror anastigmat space telescopes

    Full text link
    The size of the optics used in observatories is often limited by fabrication, metrology, and handling technology, but having a large primary mirror provides significant benefits for scientific research. The evolution of rocket launch options enables heavy payload carrying on orbit and outstretching the telescope's form-factor choices. Moreover, cost per launch is lower than the traditional flight method, which is obviously advantageous for various novel space observatory concepts. The University of Arizona has successfully fabricated many large-scale primary optics for ground-based observatories including the Large Binocular Telescope (LBT, 8.4 meter diameter two primary mirrors), Large Synoptic Survey Telescope (now renamed to Vera C. Rubin Observatory, 8.4 meter diameter monolithic primary and tertiary mirror), and the Giant Magellan Telescope (GMT, 8.4 meter diameter primary mirror seven segments). Launching a monolithic primary mirror into space could bypass many of the difficulties encountered during the assembly and deployment of the segmented primary mirrors. However, it might bring up unprecedented challenges and hurdles, also. We explore and foresee the expected challenges and evaluate them. To estimate the tolerance and optical error budget of a large optical system in space such as three mirror anastigmat telescope, we have developed a methodology that considers various errors from design, fabrication, assembly, and environmental factors.Comment: 6 pages, presented August 2023 at SPIE Optics+Photonics, San Diego, CA, US

    Topological pupil segmentation and point spread function analysis for large aperture imaging systems

    Get PDF
    Future large aperture telescopes and high contrast imaging systems will often include segment gaps, structural obscurations, along with outer edges which produce diffraction effects that are disadvantageous to high contrast imaging (e.g., for exoplanet detection) or continuous wavefront control across the optical aperture. We present an optimization strategy for several pupil segment topologies for next-generation telescope concepts. Wave propagation results based on diffraction-limited point spread function analyses using Fraunhofer diffraction theory are presented using the Python-based POPPY simulation tool

    Generalized large optics fabrication multiplexing

    Get PDF
    High precision astronomical optics are manufactured through deterministic computer controlled optical surfacing processes, such as subaperture small tool polishing, magnetorheological finishing, bonnet tool polishing, and ion beam figuring. Due to the small tool size and the corresponding tool influence function, large optics fabrication is a highly time-consuming process. The framework of multiplexed figuring runs for the simultaneous use of two or more tools is presented. This multiplexing process increases the manufacturing efficiency and reduces the overall cost using parallelized subaperture tools

    The space coronagraph optical bench (SCoOB): 2. wavefront sensing and control in a vacuum-compatible coronagraph testbed for spaceborne high-contrast imaging technology

    Full text link
    The 2020 Decadal Survey on Astronomy and Astrophysics endorsed space-based high contrast imaging for the detection and characterization of habitable exoplanets as a key priority for the upcoming decade. To advance the maturity of starlight suppression techniques in a space-like environment, we are developing the Space Coronagraph Optical Bench (SCoOB) at the University of Arizona, a new thermal vacuum (TVAC) testbed based on the Coronagraphic Debris Exoplanet Exploring Payload (CDEEP), a SmallSat mission concept for high contrast imaging of circumstellar disks in scattered light. When completed, the testbed will combine a vector vortex coronagraph (VVC) with a Kilo-C microelectromechanical systems (MEMS) deformable mirror from Boston Micromachines Corp (BMC) and a self-coherent camera (SCC) with a goal of raw contrast surpassing 10−810^{-8} at visible wavelengths. In this proceedings, we report on our wavefront sensing and control efforts on this testbed in air, including the as-built performance of the optical system and the implementation of algorithms for focal-plane wavefront control and digging dark holes (regions of high contrast in the focal plane) using electric field conjugation (EFC) and related algorithms.Comment: 7 pages, 5 figures, SPIE Astronomical Telescopes and Instrumentation 202

    The Space Coronagraph Optical Bench (SCoOB): 1. Design and Assembly of a Vacuum-compatible Coronagraph Testbed for Spaceborne High-Contrast Imaging Technology

    Full text link
    The development of spaceborne coronagraphic technology is of paramount importance to the detection of habitable exoplanets in visible light. In space, coronagraphs are able to bypass the limitations imposed by the atmosphere to reach deeper contrasts and detect faint companions close to their host star. To effectively test this technology in a flight-like environment, a high-contrast imaging testbed must be designed for operation in a thermal vacuum (TVAC) chamber. A TVAC-compatible high-contrast imaging testbed is undergoing development at the University of Arizona inspired by a previous mission concept: The Coronagraphic Debris and Exoplanet Exploring Payload (CDEEP). The testbed currently operates at visible wavelengths and features a Boston Micromachines Kilo-C DM for wavefront control. Both a vector vortex coronagraph and a knife-edge Lyot coronagraph operating mode are under test. The optics will be mounted to a 1 x 2 meter pneumatically isolated optical bench designed to operate at 10^-8 torr and achieve raw contrasts of 10^-8 or better. The validation of our optical surface quality, alignment procedure, and first light results are presented. We also report on the status of the testbed's integration in the vaccum chamber.Comment: 14 pages, 9 figure

    Instantaneous phase shifting deflectometry

    No full text
    An instantaneous phase shifting deflectometry measurement method is presented and implemented by measuring a time varying deformable mirror with an iPhone (R) 6. The instantaneous method is based on multiplexing phase shifted fringe patterns with color, and decomposing them in x and y using Fourier techniques. Along with experimental data showing the capabilities of the instantaneous deflectometry system, a quantitative comparison with the Fourier transform profilometry method, which is a distinct phase measuring method from the phase shifting approach, is presented. Sources of error, nonlinear color-multiplexing induced error correction, and hardware limitations are discussed. (C) 2016 Optical Society of AmericaCollege of Optical Sciences at the University of Arizona (Technology Research Initiative Fund (TIRF) Optics/Imaging Program); Korea Basic Science Institute; Friends of Tucson Optics (FoTO) (Endowed Scholarships in Optical Sciences)Open Access Journal.This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
    • …
    corecore