209 research outputs found

    Improving femtosecond laser pulse delivery through a hollow core photonic crystal fiber for temporally focused two-photon endomicroscopy

    Get PDF
    In this paper, we present a strategy to improve delivery of femtosecond laser pulses from a regenerative amplifier through a hollow core photonic crystal fiber for temporally focused wide-field two-photon endomicroscopy. For endomicroscope application, wide-field two-photon excitation has the advantage of requiring no scanning in the distal end. However, wide-field two-photon excitation requires peak power that is 10[superscript 4]–10[superscript 5] times higher than the point scanning approach corresponding to femtosecond pulses with energy on the order of 1–10 μJ at the specimen plane. The transmission of these high energy pulses through a single mode fiber into the microendoscope is a significant challenge. Two approaches were pursued to partially overcome this limitation. First, a single high energy pulse is split into a train of pulses with energy below the fiber damage threshold better utilizing the available laser energy. Second, stretching the pulse width in time by introducing negative dispersion was shown to have the dual benefit of reducing fiber damage probability and compensating for the positive group velocity dispersion induced by the fiber. With these strategy applied, 11 fold increase in the two photon excitation signal has been demonstrated.National Institutes of Health (U.S.) (9P41EB015871-26A1)National Institutes of Health (U.S.) (5R01EY017656-02)National Institutes of Health (U.S.) (5R01 NS051320)National Institutes of Health (U.S.) (4R44EB012415-02)National Science Foundation (U.S.) (CBET-0939511)Singapore-MIT AllianceSingapore-MIT Alliance for Research and TechnologySkolkovo Institute of Science and TechnologyHamamatsu CorporationDavid H. Koch Institute for Integrative Cancer Research at MIT. Bridge Project Initiativ

    Forgetting-aware Linear Bias for Attentive Knowledge Tracing

    Full text link
    Knowledge Tracing (KT) aims to track proficiency based on a question-solving history, allowing us to offer a streamlined curriculum. Recent studies actively utilize attention-based mechanisms to capture the correlation between questions and combine it with the learner's characteristics for responses. However, our empirical study shows that existing attention-based KT models neglect the learner's forgetting behavior, especially as the interaction history becomes longer. This problem arises from the bias that overprioritizes the correlation of questions while inadvertently ignoring the impact of forgetting behavior. This paper proposes a simple-yet-effective solution, namely Forgetting-aware Linear Bias (FoLiBi), to reflect forgetting behavior as a linear bias. Despite its simplicity, FoLiBi is readily equipped with existing attentive KT models by effectively decomposing question correlations with forgetting behavior. FoLiBi plugged with several KT models yields a consistent improvement of up to 2.58% in AUC over state-of-the-art KT models on four benchmark datasets.Comment: In Proceedings of the 32nd ACM International Conference on Information and Knowledge Management (CIKM'23), 5 pages, 3 figures, 2 table

    Estimation of axial curvature of anterior sclera: correlation between axial length and anterior scleral curvature as affected by angle kappa

    Get PDF
    Background: Though the development and fitting of scleral contact lenses are expanding steadily, there is no simple method to provide scleral metrics for scleral contact lens fitting yet. The aim of this study was to establish formulae for estimation of the axial radius of curvature (ARC) of the anterior sclera using ocular biometric parameters that can be easily obtained with conventional devices. Methods: A semi-automated stitching method and a computational analysis tool for calculating ARC were developed by using the ImageJ and MATLAB software. The ARC of all the ocular surface points were analyzed from the composite horizontal cross-sectional images of the right eyes of 24 volunteers; these measurements were obtained using anterior segment optical coherence tomography for a previous study (AS-OCT; Visante). Ocular biometric parameters were obtained from the same volunteers with slit-scanning topography and partial coherence interferometry. Correlation analysis was performed between the ARC at 8 mm to the axis line (ARC[8]) and other ocular parameters (including age). With ARC obtained on several nasal and temporal points (7.0, 7.5, 8.0, 8.5, and 9.0 mm from the axis line), univariate and multivariate linear regression analyses were performed to develop a model for estimating ARC with the help of ocular biometric parameters. Results: Axial length, spherical equivalent, and angle kappa showed correlations with temporal ARC[8] (tARC[8]; Pearson’s r = 0.653, −0.579, and −0.341; P = 0.001, 0.015, and 0.015, respectively). White-to-white corneal diameter (WTW) and anterior chamber depth (ACD) showed correlation with nasal ARC[8] (nARC[8]; Pearson’s r = −0.492 and −0.461; P = 0.015 and 0.023, respectively). The formulae for estimating scleral curvatures (tARC, nARC, and average ARC) were developed as a function of axial length, ACD, WTW, and distance from the axis line, with good determinant power (72 − 80 %; SPSS ver. 22.0). Angle kappa showed strong correlation with axial length (Pearson’s r = −0.813, P <0.001), and the different correlation patterns of nasal and temporal ARC with axial length can be explained by the ocular surface deviation represented by angle kappa. Conclusions: Axial length, ACD, and WTW are useful parameters for estimating the ARC of the anterior sclera, which is important for the haptic design of scleral contact lenses. Angle kappa affects the discrepancies between the nasal and temporal scleral curvature.Korea (South). Ministry of Health & Welfare (Projects A084496 and A120018

    Synthesis and Applications of Dicationic Iodide Materials for Dye-Sensitized Solar Cells

    Get PDF
    Dye-sensitized solar cells (DSSCs) have been receiving growing attentions as a potential alternative to order photovoltaic devices due to their high efficiency and low manufacturing cost. DSSCs are composed of a photosensitizing dye adsorbed on a mesoporous film of nanocrystalline TiO2 as a photoelectrode, an electrolyte containing triiodide/iodide redox couple, and a platinized counter electrode. To improve photovoltaic properties of DSSCs, new dicationic salts based on ionic liquids were synthesized. Quite comparable efficiencies were obtained from electrolytes with new dicationic iodide salts. The best cell performance of 7.96% was obtained with dicationic salt of PBDMIDI

    Thermomechanical Actuator-Based Three-Axis Optical Scanner for High-Speed Two-Photon Endomicroscope Imaging

    Get PDF
    This paper presents the design and characterization of a three-axis thermomechanical actuator-based endoscopic scanner for obtaining ex vivo two-photon images. The scanner consisted of two sub-systems: 1) an optical system (prism, gradient index lens, and optical fiber) that was used to deliver and collect light during imaging and 2) a small-scale silicon electromechanical scanner that could raster scan the focal point of the optics through a specimen. The scanner can be housed within a 7 mm Ø endoscope port and can scan at the speed of 3 kHz x 100 Hz × 30 Hz along three axes throughout a 125 × 125 × 100 μm[superscript 3] volume. The high-speed thermomechanical actuation was achieved through the use of geometric contouring, pulsing technique, and mechanical frequency multiplication (MFM), where MFM is a new method for increasing the device cycling speed by pairing actuators of unequal forward and returning stroke speeds. Sample cross-sectional images of 15-μm fluorescent beads are presented to demonstrate the resolution and optical cross-sectioning capability of the two-photon imaging system.National Institutes of Health (U.S.) (Grant 1-R21-CA118400-01)Chinese University of Hong Kong (Direct Grant 2050495)National Institutes of Health (U.S.) (Grant 9P41EB015871-26A1)National Institutes of Health (U.S.) (Grant 5R01EY017656-02)National Institutes of Health (U.S.) (Grant 5R01 NS051320)National Institutes of Health (U.S.) (Grant 4R44EB012415-02)National Science Foundation (U.S.) (Grant CBET-0939511)Singapore-MIT Alliance for Research and TechnologyMIT Skoltech InitiativeHamamatsu CorporationDavid H. Koch Institute for Integrative Cancer Research at MIT (Bridge Project Initiative

    Wide-field two-photon microscopy with temporal focusing and HiLo background rejection

    Get PDF
    Scanningless depth-resolved microscopy is achieved through spatial-temporal focusing and has been demonstrated previously. The advantage of this method is that a large area may be imaged without scanning resulting in higher throughput of the imaging system. Because it is a widefield technique, the optical sectioning effect is considerably poorer than with conventional spatial focusing two-photon microscopy. Here we propose wide-field two-photon microscopy based on spatio-temporal focusing and employing background rejection based on the HiLo microscope principle. We demonstrate the effects of applying HiLo microscopy to widefield temporally focused two-photon microscopy

    The economic impact of COVID-19 interventions: A mathematical modeling approach

    Get PDF
    Prior to vaccination or drug treatment, non-pharmaceutical interventions were almost the only way to control the coronavirus disease 2019 (COVID-19) epidemic. After vaccines were developed, effective vaccination strategies became important. The prolonged COVID-19 pandemic has caused enormous economic losses worldwide. As such, it is necessary to estimate the economic effects of control policies, including non-pharmaceutical interventions and vaccination strategies. We estimated the costs associated with COVID-19 according to different vaccination rollout speeds and social distancing levels and investigated effective control strategies for cost minimization. Age-structured mathematical models were developed and used to study disease transmission epidemiology. Using these models, we estimated the actual costs due to COVID-19, considering costs associated with medical care, lost wages, death, vaccination, and gross domestic product (GDP) losses due to social distancing. The lower the social distancing (SD) level, the more important the vaccination rollout speed. SD level 1 was cost-effective under fast rollout speeds, but SD level 2 was more effective for slow rollout speeds. If the vaccine rollout rate is fast enough, even implementing SD level 1 will be cost effective and can control the number of critically ill patients and deaths. If social distancing is maintained at level 2 at the beginning and then relaxed when sufficient vaccinations have been administered, economic costs can be reduced while maintaining the number of patients with severe symptoms below the intensive care unit (ICU) capacity. Korea has wellequipped medical facilities and infrastructure for rapid vaccination, and the public&apos;s desire for vaccination is high. In this case, the speed of vaccine supply is an important factor in controlling the COVID-19 epidemic. If the speed of vaccination is fast, it is possible to maintain a low level of social distancing without a significant increase in the number of deaths and hospitalized patients with severe symptoms, and the corresponding costs can be reduced
    corecore