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Abstract

This paper presents the design and characterization of a three-axis thermomechanical actuator-

based endoscopic scanner for obtaining ex vivo two-photon images. The scanner consisted of two 

sub-systems: 1) an optical system (prism, gradient index lens, and optical fiber) that was used to 

deliver and collect light during imaging and 2) a small-scale silicon electromechanical scanner that 

could raster scan the focal point of the optics through a specimen. The scanner can be housed 

within a 7 mm Ø endoscope port and can scan at the speed of 3 kHz × 100 Hz × 30 Hz along three 

axes throughout a 125 × 125 × 100 μm3 volume. The high-speed thermomechanical actuation was 

achieved through the use of geometric contouring, pulsing technique, and mechanical frequency 

multiplication (MFM), where MFM is a new method for increasing the device cycling speed by 

pairing actuators of unequal forward and returning stroke speeds. Sample cross-sectional images 

of 15-μm fluorescent beads are presented to demonstrate the resolution and optical cross-

sectioning capability of the two-photon imaging system.

Index Terms

Thermomechanical actuators; mechanical frequency multiplier; two-photon excitation; 
endomicroscope; optical scanner
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I. Introduction

The development of a two-photon excitation (TPE) endomicroscope enables real-time sub-

cellular resolution volumetric imaging with an imaging depth of 200–500 microns. This 

instrument has the potential to serve as a powerful tool for clinicians and pathologists to 

improve their diagnostic accuracy and efficiency and ultimately realize the concept of 

“optical biopsy”.

Typical TPE microscope raster scans a point focus in 3D to produce a volumetric image. 

The design of a TPE endomicroscope requires miniaturization fitting a three-axis scanner 

within the envelope of an endoscope. The scanners must operate at relatively high speed, 

e.g. 1–3 kHz to achieve a clinically acceptable frame rate. The scanning range of each 

individual micro-scanner defines the field of view of the endomicroscope that is typically on 

the order of tens to hundreds of microns on a side. As such, selections of micro-actuators/

scanners that are compatible with silicon fabrication process and simultaneously fulfill the 

range and speed requirement are critical. Existing confocal or TPE endomicroscope systems 

utilize piezoelectric actuators [1]–[4] or electrostatic actuators, e.g. MEMS mirrors [5]–[8] 

for actuation and scanning. These actuators operate at high voltage, and thus present a safety 

concern for in vivo operations. A few thermomechanical actuator-based MEMS scanners 

were used in endoscopic optical coherence tomography imaging system with limited 

scanning speed, i.e. less than 5 frames per second [9], [10]. A low voltage and low power 

high-speed scanning system has yet to be developed.

In this work, we present the modeling, design, fabrication, and characterization of a high-

speed three-axis optical scanning system for TPE endoscopy application—all with 

thermomechanical actuators (TMA). TMAs are known for their high force/power density 

but with limited bandwidth; we show by applying the “geometric contouring” and the 

“mechanical frequency multiplication (MFM)” design concept, a TMA-based high-speed 

endoscopic scanning system may be developed to generate real-time two-photon volumetric 

images with low operation voltage, i.e. less than 5V and low power level, i.e. 150mW. 

Although a TMA runs at high temperature, e.g. 1000 K, it causes no danger with proper 

insulation since the heated volume is on the micron scale and this energy dissipates quickly 

as long as the power level is low.

1) Functional Requirements—A TPE endomicroscope generates tissue images by 

scanning the focused point of light throughout a volume. For in vivo imaging, the scanning 

process should be fast such that the physiological motions, such as heart beat, of the subject 

do not compromise the fidelity of the image. Depending upon the number and the size of 

optical sections, this constraint will set the scanning speed and range. To satisfy the 

aforementioned requirements and constraints, the endoscopic scanner should operate at 3 

kHz, 30 Hz, and 2 Hz for the X, Y, and Z (optical) axis respectively. With a 2D frame rate 

of 30Hz and a 3D image rate of 2Hz, motion artifacts will cause variances in the axial 

spacing between 2D frames but each 2D frame will remain mostly motion artifact free. This 

inaccuracy in the axial direction is often tolerable because histopathologists base their 

analyses primarily on 2D image morphological features. The focused laser should scan 100 

microns in all three axes to sample a sufficiently large tissue volume. The envelope of the 
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scanner should reside within a 7mm Ø endoscope port. These clinically driven functional 

requirements are summarized in Table I. The preliminary ex vivo experiments presented 

later in this paper were scanned at 1kHz, 2Hz, and 0.1Hz in each axis in order to increase the 

signal to noise ratio. Note for some in vivo experiments, where weak endogenous 

fluorescent signals are used to generate images, the frame rate is actually limited by the 

signal strength rather than the mechanical scan speed.

II. Design for the Distal Optics of a TPE Endomicroscope

Figure 1 shows the optical design of the TPE endomicroscope system. In this system, 

ultrafast optical pulses from a Ti:Sappire laser with 100fs pulse width, 80MHz repetition 

rate at the center wavelength of 780nm (MaiTai, Spectra-Physics, Mountain View, CA) 

were used as the excitation light source. A double clad photonic crystal fiber (DCPCF) 

(DC-165-16-Passive, Crystal Fibre A/S) was used to deliver both the excitation and 

emission light. (DCPCF allows a single mode excitation beam delivery through its core and 

emission beam delivery through the core and inner clad, thereby simplifying the 

endomicroscope design and increasing the detection efficiency.) A pre-chirping unit was 

used to precompensate the linear pulse dispersion induced by DCPCF and maximize the 

two-photon excitation efficiency, which is inversely proportional to the pulse width of the 

excitation beam. After propagating through the DCPCF, the pulsed excitation beam was 

guided to the silicon scanning bench, going through a prism and lastly a gradient index 

(GRIN) lens as the objective lens (GRINTECH: GT-LFRL-100-017; NA = 0.5). The 

emission from the focal point in the sample then traveled back through the optical train, and 

was guided to a photo-multiplier tube (PMT) detector via a dichroic mirror (DM). The 

relative positions among different optical components were optimized by ray-tracing 

analysis with Zemax (Radiant Zemax, Redmond, WA) in order to maximize resolution and 

minimize aberrations.

To obtain volumetric images, the DCPCF, prism, and GRIN lens need to be scanned in the 

X, θX, and Z direction respectively. The DCPCF will generate the X-axis scanning motion 

by a TMA-based fiber resonator; the prism and the objective GRIN lens will generate the Y-

axis and Z-axis scanning respectively by TMA-actuated shuttles on the silicon scanning 

bench. Note that the Y-axis scan is performed via oscillating the prism about the θX axis; the 

100 micron requirement is equivalent to a 2° angular scanning motion.

III. TMA-Based Two-Axis Silicon Scanning Bench

This section presents the modeling, design, and experimental characterization of the two-

axis endoscopic scanner. Figure 2A shows the optical system on the silicon optical bench. 

The scanner is comprised of a GRIN lens shuttle and a prism shuttle, each integrated with 

guiding flexures and TMAs. The GRIN lens and the prism are of millimeter scale; the 

optical bench provides micrometer-level precision alignment for the lenses. The 

performance of the chevron TMAs are optimized through the geometric contouring 

technique [11]. High-speed operation may be achieved through the application of the high-

speed pulsing technique [12].
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A. Flexural Bearing for Motion Guidance and Amplification

The scanner consists of two sets of flexural bearings with chevron TMA trains, i.e. the 

GRIN lens shuttle and the prism shuttle. The chevron TMAs were selected over parallel 

TMAs because for a given footprint they were able to run in parallel and generate larger 

force output without sacrificing the stroke. TMAs used in the system were optimized via 

“geometric contouring” technique with the following objective: (1) minimize power 

consumption and (2) maximize stroke. This was desired because the TMA trains on the 

scanner operate at a moderate speed of 30Hz and 2Hz, but require a rather large stroke of 

100 microns. The speed is not critical here as with the pulsing technique the TMA train is 

able to achieve a 10-times faster cycling speed [12]. As the flexure mechanism may easily 

provide more than 10X motion amplification, the required stroke for individual TMA was 

set to be 10 micron. The optimal design parameters were selected by using the contoured 

chevron TMA performance charts provided in [11]. The TMA performance for the GRIN 

lens shuttle and the prism shuttle was modeled and is summarized in Table II.

1) Translation Flexural Bearing Concept—The flexural bearing that was actuated by 

the TMA trains provides precision guidance and reduced parasitic motion for active optical 

components. As shown in Figure 2A, the flexural bearing that carries the objective GRIN 

lens generates linear motion and travels 100 microns. This flexural bearing consists of a 

two–stage chevron amplification mechanism that was driven by two sets of chevron TMA 

trains. The symmetric design is used to prevent lateral parasitic motion. Note that only the 

chevron TMA train was used as an actuator. The interlinking chevron flexure was for 

transmitting/amplifying mechanical motion, and did not experience internal heat generation.

2) Rotary Flexural Bearing Concept—The second flexural bearing carried the prism 

and generated rotary motion about the instant center over +2.50°. This rotary bearing was 

driven by the two-stage chevron amplification mechanism and chevron TMA train, shown in 

Figure 2A. The shuttle that carries the prism was part of a flexural four-bar mechanism. The 

instant center of this four-bar mechanism was designed to be on the reflecting point of the 

prism’s inner surface. Parasitic translational motion should therefore be minimized during 

the rotation. By supplying the TMA train a constant power and varying the angle between 

the two supporting flexures of the four-bar mechanism, the optimal angle of the four-bar 

mechanism can be found. As shown in Figure 3, at 70° the flexural rotary bearing yields 6 

nm of parasitic motion at full stroke (2.5°). As the GRIN lens and prism weigh 1.5 and 1.2 

grams respectively, the gravity effects on both shuttles were modeled and proven to be 

below a level that would cause practical concern.

B. Mechanical Impedance Matching

With the optimized flexural four-bar mechanism, we now model the cascaded chevron 

flexure in order to optimize its transmission ratio, defined as the ratio of the output 

displacement to the input displacement.

The transmission ratio, axial stiffness, and lateral stiffness of a chevron flexure, are all 

functions of the angle (θ) between the chevron beam and the horizontal line shown in Figure 

4A. In Figure 4B, the transmission ratio and the lateral stiffness of a chevron mechanism 
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drop sharply, while the axial stiffness increases gradually, as the angle (θ) increases. It is not 

uncommon for designers to attempt to cascade two chevron mechanisms at small angles in 

order to receive a large transmission ratio. In fact, this design will result in a low 

transmission ratio because of the mismatch between the axial and lateral stiffness of the first 

(TMA) and second (amplification flexure) chevron mechanisms that are shown in Figure 5.

A basic concept that may be used for optimizing the energy transfer from the first chevron 

TMA to the second chevron mechanism is to match their mechanical impedance, i.e. design 

the chevron flexures so that the axial stiffness (KA1) and lateral stiffness (KL2) of the first 

and second chevrons are equal. There are two ways to adjust the relative values of KA1 and 

KL2 for mechanism optimization: (1) adjust angles of the first and second TMAs, i.e. θ1 and 

θ2, as shown in Figure 4B and Figure 5, or (2) use many chevron TMAs in parallel, where 

the effect of increased axial stiffness helps to increase the transmission ratio as shown in 

Figure 4C and Figure 5, where N represents the number of parallel TMAs. Although a large 

transmission ratio may be obtained through the second option, this may result in a large 

power requirement to run many TMAs simultaneously.

As shown in Figure 5, the cascaded chevron mechanism may be modeled as a two-spring 

system, where spring constants KA1(θ1) and KL2(θ2) represent the axial stiffness and the 

lateral stiffness of the first and second chevron mechanism respectively. The variable XIN 

represents the displacement of a chevron TMA (first chevron mechanism), and X is the 

output displacement of the cascaded system. The relationship between X and XIN is shown in 

Equation (1). The overall transmission ratio of the cascaded mechanism is shown in 

Equation (2). The stroke of cascaded system is the product of the input displacement and the 

transmission ratio, as shown in Equation (3).

(1)

(2)

(3)

Equation (2) was used to set a transmission ratio as a function of θ1 and θ2. Figure 6A 

presents the optimal transmission ratios as a function of the number of parallel TMAs. The 

normalized mechanism stroke, i.e., power efficiency, as a function of number of TMAs, may 

be obtained by dividing the optimal transmission ratio by the number of TMAs. Figure 6A 

indicates that more parallel TMAs lead to a larger transmission ratio. Unfortunately, there is 

a corresponding decrease in power efficiency, as shown in Figure 6B. A minimum number 

of TMAs should be used if the optimization objective is to minimize the power 

consumption.

A general approach that may be used to obtain an efficient design is summarized below:
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Step 1: Determine the required stroke (S) from functional requirements.

Step 2: Determine the required displacement (d) of an individual TMA.

Step 3: Determine the required optimal transmission ratio (TR) by dividing the system 

stroke by the individual TMA’s displacement (TR = S/d).

Step 4: Obtain the corresponding values for θ1 and θ2 for the optimal transmission ratio 

from the transmission equation.

Note that using Equation (2), we can obtain surface plots of the transmission ratio as a 

function of θ1 and θ2 with different number of TMAs, shown in Figure 7A. When the 

required transmission ratio is determined, optimal values of θ1 and θ2 can be found through 

the surface plot, as shown in Figure 7B.

C. Modeling and Optimization

In this section, we discuss how best design is achieved. We first consider two optimization 

objectives: (1) temperature minimization design and (2) power minimization design. The 

GRIN lens shuttle is used as an example to demonstrate the design process.

As the scanner is designed for in vivo operation, one may desire a reduced operating 

temperature. The design process is: (1) determine the TMA’s maximum operating 

temperature from functional requirements, e.g., 150°C, (2) optimize the TMA’s 

performance, e.g. stroke, at the specified temperature by the geometric contouring method, 

and (3) obtain the required number of TMAs and the relative optimal transmission ratio 

from Equation (2). This approach leads us to a 20-TMA design for 100 micron output 

displacement at 150°C, where the transmission ratio is 45.1, θ1 = 2.0°, and θ2 = 2.0°.

For the power minimization, we can set the maximum operating temperature to 1200 K as a 

TMA operates more efficiently at high temperature. Following the same design process, we 

find with the power minimization approach, we can achieve 100 micron output displacement 

with merely 2 parallel TMAs at 125 mW power consumption. The related transmission ratio 

is 28.1, for θ1 = 2.5°, and θ2 = 3.6°.

Although to minimize operation temperature or power may seem reasonable, each of them 

has its drawbacks. For the low temperature design, the combined power consumption of the 

GRIN lens and prism shuttle on a single chip may be too high, i.e. 1.2W, making this device 

inefficient. For the low power design, the maximum stroke at 100 micron will be reached at 

1200°K which leaves the device no room for additional displacement. Based on these 

analyses, a better approach is to set a fixed number of TMAs and optimize transmission 

ratio. Additionally, the use of more parallel TMAs increases the shuttle’s structural integrity.

For the best design, we choose the number of TMAs (N) to be 5. Accordingly, this design 

easily satisfies the stroke requirement, achieving a 100 micron output displacement at 160 

mW power consumption, and a maximum stroke of 400 micron at 1200°K. The transmission 

ratio is 43.8, θ1 = 2.2°, and θ2 = 2.8°. The best design was thus chosen for fabrication and 

testing.
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The design parameters and simulated performance of the GRIN lens shuttle and the prism 

shuttle for three different design objectives are summarized in Table III.

IV. Experimental Results and Discussion

Figure 8 shows frequency spectrums of the GRIN lens and prism shuttle (note experimental 

data in this section were obtained with lenses loaded). The simulated first and second mode 

of the GRIN lens shuttle generate in-plane and out-of-plane motion at 1,527 Hz and 7,121 

Hz respectively. The measured in-plane resonant peak is at 1,508 Hz, which matches the 

simulated value within 1.3%. For the prism shuttle, the simulated values of first and second 

mode are 3,205Hz and 7,096Hz respectively; the measured corresponding resonant peaks 

(3,124 Hz and 7320 Hz) match the simulated values with errors of +2.6% and −3.0% 

respectively, as shown in Figure 8B. The accuracy of the frequency modeling is attributed to 

the accurate geometry values that were obtained via measurement within the SEM. The 

frequency results also indirectly indicate that there were no hidden cracks or broken flexures 

in the device.

Figure 9 shows the step response of the GRIN lens and prism shuttle. The measured rise 

time and fall time for the GRIN lens shuttle were 0.46 and 0.38 second respectively. These 

values show an error of −6.5%. For the prism shuttle, it was found that the rise time and fall 

time were 0.13 and 0.09 second respectively. The worst case error between these values and 

the predicted values was +7.7%. We also found the cycling speed of the GRIN lens shuttle 

fulfills the requirements, i.e. to scan at 2 Hz, before the pulsing technique was applied. 

Details of the TMA modeling approach may be found in [11], [12].

Figure 10 shows the results for static displacement of the GRIN lens and prism shuttle, 

demonstrating they fulfill the stroke requirement. Measured positions were plotted as a 

function of command position in Figure 10A and Figure 10B. In both experiments, the 

measured displacements show a gradual divergence from commanded values at elevated 

temperature, where a +6.7% error was observed at full stroke for the GRIN lens shuttle. This 

divergence was due in part to the temperature dependence of electrical resistivity and the 

differences in the manner in which electrical properties of dopants (phosphorous and arsine) 

change with temperature. Assuming the thermal conductivity and coefficient of thermal 

expansion (CTE) of our arsine-doped wafer were accurate, the resistivity would have a 7% 

error at elevated temperatures. Note that the fabrication errors were not included in the error 

analysis as all critical dimensions of the devices were measured in the SEM after they were 

fabricated.

The match between the simulated and experimental results in both dynamic and static 

measurements gives confidence that our parametric models may be used by other designers 

to predict device performance with less than 7% error.

V. Mechanical Frequency Multiplication for Fiber Resonation

This section presents the modeling, design, and experimental characterization of the TMA-

based fiber resonator based on the concept of “mechanical frequency multiplication” [13], as 
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shown in Figure 11. The MFM resonator excites the DCPCF at its resonant frequency, i.e. 

1–3kHz, in order to generate a linear scanning pattern for the high-speed X-axis.

An MFM device consists of three components: (1) a pulse-generating TMA pair, (2) a 

decoupling flexure, and (3) a main stage that is connected and guided by flexures. The 

pulse-generating pair utilizes the fact that TMAs possess different forward and return stroke 

speeds. The concept of MFM is to use the high–speed portion of the one actuator to rapidly 

achieve half–cycle motion and then use the opposing actuator to rapidly return the last half 

cycle. If N actuator pairs are placed in parallel, time delayed signals may be used to drive 

each set with a delay, thereby increasing the cycling frequency by N.

Figure 11 presents schematics of the MFM concept and its operation principle. Figure 11A 

shows examples of a pulse generation TMA pair, where a high frequency mechanical pulse 

output may be generated by pairing two TMAs, “α” and “β”, in opposing directions and 

supplying them with time-delayed power input α and β respectively; Figure 11B shows short 

pulses generated by a TMA pair—although TMA α and β cool down slowly, the resultant 

motion for the TMA pair forms a pulse. Figure 11C and 11D shows the temperature and 

displacement effects of combining multiple pulse pairs, achieving high cycling frequency. It 

is worth to note that the mechanical pulse width is not limited by cooling time/process. It is 

only limited by the dynamic characteristics of the actuator pair that is the pair’s resonant 

frequency. An actuator system with high bandwidth may be constructed if many of the TMA 

pairs act in parallel to drive a common stage with time delays in their pulses.

A. MFM Fiber Resonator Design

The design concept of the MFM fiber resonator is shown in Figure 12. Two pulse-generation 

chevron TMA pairs are located at either side of the main stage, which is the most basic form 

of an MFM system. In this design, four TMAs also function as (1) the motion guiding 

flexures and (2) the coupling flexures that transmit their motions to the stage. This flexure 

concept provides the MFM with a high mechanical resonance frequency (17.7 kHz). The 

device was designed to fit within a 2 × 2 mm2 envelope. The fourTMA design was able to 

achieve 4 times the cycling frequency of one of its constituent TMAs.

B. TMA Selection and Design

Geometric contouring designs were applied to the TMAs in the MFM fiber resonator to 

enhance stroke, efficiency and power consumption. It is known that the forward and return 

speed ratio of a contoured TMA may be controlled by either the input command or the 

design parameters for a contoured beam [12]. It is therefore important to design each 

constituent contoured TMA of the four-TMA MFM system so that its fall time (cooling 

time) is equal to, or larger than, four times its rise time (heating time). The MFM system 

will perform more efficiently when this requirement is met. Accordingly, the contoured 

TMAs of the MFM system were then designed and optimized based on this objective and 

the static/dynamic TMA performance charts provided in [11], [12]. The finalized design 

parameters of TMAs are listed in Table IV, where LS, LL, w′ and we are defined and 

discussed in detail in [11], [12].
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C. Fiber Resonance Experiment

Figure 13 shows the results of the resonance on the fiber’s tip. The images were acquired via 

the CCD camera. Figure 13A shows a still image of the fiber’s tip before the MFM was 

energized, and Figure 13B shows the fiber movement patterns that were generated by 

actuating the MFM with properly coordinated actuation signals. The amplitude of the 

scanning range was estimated to be 125±2 micron, which satisfies the functional 

requirements. The accuracy of the amplitude was ascertained by pixel-counting the image 

obtained from the CCD camera, where each pixel in the image equals to 0.5 μm.

VI. Microfabrication Processes

The microfabrication process, shown in Figure 14, for both the silicon optical bench and the 

MFM fiber resonator are described below:

Step 1: The process starts with a SOI wafer (device layer: 200 micron; resistivity = 

0.001 ohm-cm).

Step 2: Deposit and pattern 300 nm aluminum contacts for the device through 

sputtering.

Step 3: Pattern the device structure with deep reactive ion etching (DRIE).

Step 4: Target–mount the device wafer onto another silicon wafer via photoresist.

Step 5: Release the device with a backside through–etch using DRIE.

Step 6: Release the mounted device wafer and clean the photoresist/residues.

VII. Imaging Experiments and Preliminary Results

Custom-developed data acquisition software and control electronics were constructed to 

synchronize the different scanning axes with the photon counting circuitry monitoring the 

optical signal from the photomultiplier tube. 3D images were reconstructed computationally 

by correlating the measured optical signal strength with the known scanner positions. 

Characterization of individual scanner was first performed to confirm the endomicroscope’s 

field of view as well as the reliability of the system, as discussed in previous sections. To 

demonstrate 3D optically sectioned imaging capability of the TPE endomicroscope system 

and to characterize the resolution of the system, fluorescent beads of different sizes, 

including 5, 10, 15 microns, were used for preliminary imaging experiments. The results 

indicate that the endomicroscope has a lateral resolution of approximately 1.0 micron and 

axial resolution of 8.0 micron with a penetration depth of 100 micron (limited by the range 

of Z scan). Figure 15 shows an example of fluorescent bead cross section images obtained 

through the two-photon endomicroscope. The imaging results confirm the effectiveness of 

TMA-based micro-scanning system.

VIII. Conclusion

We have presented the design, modeling, fabrication and experimental characterization of a 

silicon optical scanner and a MFM fiber resonator—all based on TMAs. The design method 

of “geometric contouring” was used in optimizing TMAs in all devices. Experimental results 
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show the fabricated optical scanner, containing the GRIN lens scanner and the prism 

scanner, achieved 100 micron and 2.5° scanning range and the MFM resonator achieved 125 

micron scan range, satisfying all functional requirements at a power level of approximately 

150mW and a 5V operation voltage; this presents a minimized safety risk for in vivo 

experiments. Our parametric models also match well with the experimental results both in 

static and dynamic measurements, providing designers a fast and accurate design approach 

rather than entirely resorting to time-consuming finite element analysis. (Note FEM was still 

used for calculating the natural frequencies and system mode shapes as well as for fine-

tuning the final design parameters.) These results enable designers to systematically obtain 

the optimal mechanical design for their applications. In the end, we present the preliminary 

imaging results showing TPE optical cross-sectional images may be reliably obtained via the 

TMA-based scanners. The endomicroscope is characterized to have an in-plane resolution of 

1.0 micron and axial resolution of 8.0 micron. The results show great potential of using the 

TPE endomicroscope for real-time disease diagnosis. Future efforts will be focused on 

applying the TPE endomicroscope for in vivo animal studies.
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Fig. 1. 
Optical configuration of the TPE endomicroscope system.
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Fig. 2. 
Schematics (A) and fabricated (B) 2-axis endoscopic scanner with integrated GRIN lens, 

prism and TMA actuators.
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Fig. 3. 
Flexural rotary bearing optimization. Note that at 70° the ratio of parasitic displacement over 

actuator displacement is 2.9 × 10−3 [mm/mm].
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Fig. 4. 
Transmission ratio, axial, lateral stiffness of a chevron mechanism as a function of angle and 

the number of chevron TMAs. A: Contoured chevron TMA model, where θ is the TMA 

angle, KA and KL are the axial and latteral stiffness of the TMA; B: Characteristics of a 

single chevron mechanism; C: Increased axial stiffness by devising 10 or 20 chevron TMAs 

in parallel.
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Fig. 5. 
Two–spring model for the cascaded chevron mechanism.
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Fig. 6. 
A: Optimal transmission ratio as a function of number of TMAs; B: Power efficiency as a 

function of number of TMAs.
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Fig. 7. 
Transmission ratio surface plot as a function of θ1, θ2, and number of TMAs (N).
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Fig. 8. 
Measured frequency spectrum and for GRIN lens shuttle and prism shuttle.
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Fig. 9. 
Step response of GRIN lens shuttle and prism shuttle.
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Fig. 10. 
Displacement vs. input command plot for GRIN lens shuttle and prism shuttle.
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Fig. 11. 
Schematics of the mechanical frequency multiplication concept and its operation principle. 

A: Examples of pulse generator pairs. B: Short pulses generated by pulse pairs. C: Max. 

temperature on individual pulse pair. D: Multiple pulse pairs are combined to form an MFM.
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Fig. 12. 
Schematics and image of a MFM fiber resonator with fiber mounted. A: Schematics and 

image. B: MFM device in operation.
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Fig. 13. 
CCD images of MFM resonator in operation at 965 Hz, generating a line scan of 125 

micron. A: Still image of the fiber before actuation. B: Fiber resonated by the MFM system.
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Fig. 14. 
Microfabrication process for silicon optical bench and MFM fiber resonator.
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Fig. 15. 
A stack of fluorescent beads images with a field of view of ~ 50 × 60 microns. Each bead is 

of 15 micron in diameter and each frame is 3 micron apart in Z-axis.
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TABLE I

Functional Requirements and Constraints of the Endoscopic Scanner

X-axis Y-axis (θx) Z-axis

Range 100 μm 100 μm (2°) 100 μm

Speed (in vivo) 3 kHz 30 Hz 2 Hz

Speed (ex vivo) 1 kHz 2 Hz 0.1 Hz

Envelope Within a 7mm diameter tube
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TABLE II

Simulated Performance of Contoured TMA for the Optical Scanner

TMA for th GRIN lens shuttle

Stroke 10 μm

Operating voltage 2.8 V

Operating temperature 580 K

TMA bandwidth 8 Hz (before pulsing)

Max. force output 10 mN

TMA for the prism shuttle

Stroke 14 μm

Operating voltage 2.8 V

Operating temperature 580 K

TMA bandwidth 16 Hz (before pulsing)

Max. force output 8 mN
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TABLE III

Summary of Three Scanner Designs for Different Objectives

Design I Design II Design III

Low temperature Low power Best design

Parameters

Transmission for GRIN shuttle 45.1 23.8 43.8

θ1 2.0° 2.5° 2.8°

θ2 2.0° 3.6° 2.2°

Stroke 100 μm 100 μm 100 μm

Power (at full stroke) 700 mW 125 mW 160 mW

Transmission for prism shuttle 42.5 11.5 18.8

θ1 2.0° 5.0° 4.5°

θ2 2.5° 5.5° 4.5°

Stroke 2.0° 4.0° 8.0°

Power (at full stroke) 500 mW 50 mW 125 mW
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TABLE IV

Design Parameters of Contoured TMAs in MFM Resonator

Contoured TMA design parameters for MFM fiber resonator

LS/LL 1/8 we 9.25 μm

L/2LL 5/4 L 1000 μm

w′ 1/2 b 200 μm

J Microelectromech Syst. Author manuscript; available in PMC 2015 February 09.


