4,313 research outputs found

    Charge states and magnetic ordering in LaMnO3/SrTiO3 superlattices

    Full text link
    We investigated the magnetic and optical properties of [(LaMnO3)n/(SrTiO3)8]20 (n = 1, 2, and 8) superlattices grown by pulsed laser deposition. We found a weak ferromagnetic and semiconducting state developed in all superlattices. An analysis of the optical conductivity showed that the LaMnO3 layers in the superlattices were slightly doped. The amount of doping was almost identical regardless of the LaMnO3 layer thickness up to eight unit cells, suggesting that the effect is not limited to the interface. On the other hand, the magnetic ordering became less stable as the LaMnO3 layer thickness decreased, probably due to a dimensional effect.Comment: 17 pages including 4 figures, accepted for publication in Phys. Rev.

    Evidence of metallic clustering in annealed Ga1-xMnxAs from atypical scaling behavior of the anomalous Hall coefficient

    Get PDF
    We report on the anomalous Hall coefficient and longitudinal resistivity scaling relationships on a series of annealed Ga1-xMnxAs epilayers (x~0.055). As-grown samples exhibit scaling parameter n of ~ 1. Near the optimal annealing temperature, we find n ~ 2 to be consistent with recent theories on the intrinsic origins of anomalous Hall Effect in Ga1-xMnxAs. For annealing temperatures far above the optimum, we note n > 3, similar behavior to certain inhomogeneous systems. This observation of atypical behavior agrees well with characteristic features attributable to spherical resonance from metallic inclusions from optical spectroscopy measurements.Comment: 3 pages, 3 figure

    Effect of Liquid Cattle Manure Application on the Botanical Composition Forage Dry Yield and Soil Chemical Characteristics in Mixed Pastures

    Get PDF
    Many farmers apply liquid cattle manure on grassland, often in excess of crop N requirement, resulting in groundwater contamination. Our experiment was carried out to determine the effect of liquid cattle manure application on the botanical composition, forage dry yield and soil chemical characteristics in mixed pastures at the forage experimental field, National Livestock Research Institute, RDA, Korea. Five treatments consisting of no fertilizer, chemical fertilizer (210kg N/ ha), liquid cattle manure (40, 60 and 80 ton N/ ha) were arranged in a randomized complete block design with three replicates. No fertilizer treatment consistently had lower botanical composition rate of grass than the liquid cattle manure and the chemical fertilizer ones. The botanical composition rate of grasses and legumes differ when liquid cattle manure was applied and cut frequent (1, 2, 3 cut time) were compared, but time of 4 cut were no differences among all treatment. The dry matter yields of the mixed pasture were ranged between 9,765 and 9,860MT in liquid cattle manure, 10,110MT in chemical fertilizer, and 5,497MT without fertilizer. The content of available P2O5 in soil decreased with increasing application of liquid cattle manure. The results of this study indicate that liquid cattle manure can be effectively used to produce yields comparable to those obtained with chemical fertilizer

    Slow Control Systems of the Reactor Experiment for Neutrino Oscillation

    Full text link
    The RENO experiment has been in operation since August 2011 to measure reactor antineutrino disappearance using identical near and far detectors. For accurate measurements of neutrino mixing parameters and efficient data taking, it is crucial to monitor and control the detector in real time. Environmental conditions also need to be monitored for stable operation of detectors as well as for safety reasons. In this article, we report the design, hardware, operation, and performance of the slow control system

    Bioethanol Production from Ulva pertusa Kjellman by High-temperature Liquefaction

    Get PDF
    This work was investigated to improve hydrolysis yields of macro alga, Ulva pertusa Kjellman by high-temperature liquefaction process (HTLP). We hydrolyzed this alga to produce bioethanol. U. pertusa Kjellman contains approximately w = 32 % glucose, comprising w = 6 % cellulose and 20 % starch, along with w = 5.9 % xylose. Among 32 % of total carbohydrates, ca. 26 % of glucose was hydrolyzed from starch (20 %) and cellulose (6 %), respectively, which tells that a more efficient process might be considered to completely hydrolyze the polymers containing fermentable sugars such as glucose and galctose, etc. Optimal hydrolysis conditions for the high-temperature liquefaction process (HTLP) were determined to be 15 MPa and 150 °C for 15 min, with water as the solvent. We found that the process temperature and time were the most important factors in the operation. Under these conditions, the conversion yields of glucose and xylose were 9.08 and 21.14 %, respectively. After cellulase and amyloglucosidase treatment, 61.1 % glucose (based on w = 32.1 %, dry basis) was converted into glucose without further conversion into xylose. The present process provided 3.1 to 12.6 % higher overall hydrolysis yields from U. pertusa Kjellman than those from other agricultural biomass. The HTLP process generated only about 40 mg L–1 of HMF (5-hydroxymethylfurfural). This concentration was much less than those from other pretreatment processes and resulted in approximately 90 % of the maximum theoretical ethanol yield. In addition, the hydrolysis pattern of U. pertusa Kjellman was much different from those of agricultural biomass materials due to different starch compositions and polymer structures

    A Major Locus for Quantitatively Measured Shank Skin Color Traits in Korean Native Chicken

    Get PDF
    Shank skin color of Korean native chicken (KNC) shows large color variations. It varies from white, yellow, green, bluish or grey to black, whilst in the majority of European breeds the shanks are typically yellow-colored. Three shank skin color-related traits (i.e., lightness [L*], redness [a*], and yellowness [b*]) were measured by a spectrophotometer in 585 progeny from 68 nuclear families in the KNC resource population. We performed genome scan linkage analysis to identify loci that affect quantitatively measured shank skin color traits in KNC. All these birds were genotyped with 167 DNA markers located throughout the 26 autosomes. The SOLAR program was used to conduct multipoint variance-component quantitative trait locus (QTL) analyses. We detected a major QTL that affects b* value (logarithm of odds [LOD] = 47.5, p = 1.60×10−49) on GGA24 (GGA for Gallus gallus). At the same location, we also detected a QTL that influences a* value (LOD = 14.2, p = 6.14×10−16). Additionally, beta-carotene dioxygenase 2 (BCDO2), the obvious positional candidate gene under the linkage peaks on GGA24, was investigated by the two association tests: i.e., measured genotype association (MGA) and quantitative transmission disequilibrium test (QTDT). Significant associations were detected between BCDO2 g.9367 A>C and a* (PMGA = 1.69×10−28; PQTDT = 2.40×10−25). The strongest associations were between BCDO2 g.9367 A>C and b* (PMGA = 3.56×10−66; PQTDT = 1.68×10−65). However, linkage analyses conditional on the single nucleotide polymorphism indicated that other functional variants should exist. Taken together, we demonstrate for the first time the linkage and association between the BCDO2 locus on GGA24 and quantitatively measured shank skin color traits in KNC
    corecore