27 research outputs found

    Applications of Bioinspired Reversible Dry and Wet Adhesives: A Review

    Get PDF
    <jats:p>Bioinspired adhesives that emulate the unique dry and wet adhesion mechanisms of living systems have been actively explored over the past two decades. Synthetic bioinspired adhesives that have recently been developed exhibit versatile smart adhesion capabilities, including controllable adhesion strength, active adhesion control, no residue remaining on the surface, and robust and reversible adhesion to diverse dry and wet surfaces. Owing to these advantages, bioinspired adhesives have been applied to various engineering domains. This review summarizes recent efforts that have been undertaken in the application of synthetic dry and wet adhesives, mainly focusing on grippers, robots, and wearable sensors. Moreover, future directions and challenges toward the next generation of bioinspired adhesives for advanced industrial applications are described.</jats:p&gt

    Enhanced Thermal Transport across Self-Interfacing van der Waals Contacts in Flexible Thermal Devices

    Get PDF
    Minimizing the thermal contact resistance (TCR) at the boundary between two bodies in contact is critical in diverse thermal transport devices. Conventional thermal contact methods have several limitations, such as high TCR, low interfacial adhesion, a requirement for high external pressure, and low optical transparency. Here, a self-interfacing flexible thermal device (STD) that can form robust van der Waals mechanical contact and low-resistant thermal contact to planar and non-planar substrates without the need for external pressure or surface modification is presented. The device is based on a distinctive integration of a bioinspired adhesive architecture and a thermal transport layer formed from percolating silver nanowire (AgNW) networks. The proposed device exhibits a strong attachment (maximum 538.9 kPa) to target substrates while facilitating thermal transport across the contact interface with low TCR (0.012 m(2) K kW(-1)) without the use of external pressure, thermal interfacial materials, or surface chemistries

    A cutting-edge solution for adhesives

    No full text
    Metamaterial adhesives with nonlinear cut architectures provide strong and reversible adhesion, directionality and spatially programmable adhesive strength

    3D Printable Self-Adhesive and Self-Healing Ionotronic Hydrogels for Wearable Healthcare Devices

    No full text
    Ionotronic hydrogels have attracted significant attention in emerging fields such as wearable devices, flexible electronics, and energy devices. To date, the design of multifunctional ionotronic hydrogels with strong processability, and high conductivity are key requirements for future wearable devices. Herein, we report the rational design and facile synthesis of 3D printable, self-adhesive, self-healing, and conductive ionotronic hydrogels based on the synergistic dual reversible interactions of poly(vinyl alcohol), borax, pectin, and tannic acid. Multifunctional ionotronic hydrogels exhibit strong adhesion to various substrates with different roughness and chemical components, including porcine skin, glass, nitrile gloves, and plastics (normal adhesion strength of 55 kPa on the skin). In addition, the ionotronic hydrogels exhibit intrinsic ionic conductivity imparting strainsensing properties with a gauge factor of 2.5 up to a wide detection range of approximately 2000%, as well as improved self-healing behavior. Based on these multifunctional properties, we further demonstrate the use of ionotronic hydrogels in the 3D printing process for implementing complex patterns as wearable strain sensors for human motion detection. This study is expected to provide a new avenue for the design of multifunctional ionotronic hydrogels, enabling their potential applications in wearable healthcare devices
    corecore