65 research outputs found

    All-in-focus fine needle aspiration biopsy imaging based on Fourier ptychographic microscopy

    Get PDF
    Context: Cytology is the study of whole cells in diagnostic pathology. Unlike standard histologic thinly sliced specimens, cytologic preparations consist of preparations of whole cells where cells commonly cluster and aggregate. As such, cytology preparations are generally much thicker than histologic slides, resulting in large patches of defocus when examined under the microscope. A diagnostic aggregate of cells often cannot be viewed in focus together, requiring pathologists to continually manipulate the focal plane, complicating the task of accurately assessing the entire cellular aggregate and thus in making a diagnosis. Further, it is extremely difficult to acquire useful uniformly in-focus digital images of cytology preparations for applications such as remote diagnostic evaluations and artificial intelligence models. The predominant current method to address this issue is to acquire digital images at multiple focal planes of the entire slide, which demands long scanning time, complex and expensive scanning systems, and huge storage capacity. Aims: Here we report a unique imaging method that can acquire cytologic images efficiently and computationally render all-in-focus digital images that are highly compact. Methods and material: This method applies a metric-based digital refocusing to microscopy data collected with a Fourier ptychographic microscope (FPM). The digitally refocused patches of images are then synthesized into an all-in-focus image. Results: We report all-in-focus FPM results of thyroid fine needle aspiration (FNA) cytology samples, demonstrating our method\u27s ability to overcome the height variance of 30 μm caused by cell aggregation, and rendering images at high resolution (corresponds to a standard microscope with objective NA of 0.75) and that are all-in-focus. Conclusions: This technology is applicable to standard microscopes, and we believe can have an impact on diagnostic accuracy as well as ease and speed of diagnosing challenging specimens. While we focus on cytology slides here, we anticipate this technology\u27s advantages will translate well for histology applications. This technique also addresses the issue of remote rapid evaluation of cytology preparations. Finally, we believe that by resolving the focus heterogeneity issues in standard digital images, this technique is a critical advance for applying machine learning to cytology specimens

    Calibration of second-order correlation functions for non-stationary sources with a multi-start multi-stop time-to-digital converter

    Full text link
    A novel high-throughput second-order-correlation measurement system is developed which records and makes use of all the arrival times of photons detected at both start and stop detectors. This system is suitable particularly for a light source having a high photon flux and a long coherence time since it is more efficient than conventional methods by an amount equal to the product of the count rate and the correlation time of the light source. We have used this system in carefully investigating the dead time effects of detectors and photon counters on the second-order correlation function in the two-detector configuration. For a non-stationary light source, distortion of original signal was observed at high photon flux. A systematic way of calibrating the second-order correlation function has been devised by introducing a concept of an effective dead time of the entire measurement system.Comment: 7 pages, 6 figure

    Biscrolled Carbon Nanotube Yarn Structured Silver-Zinc Battery

    Get PDF
    Flexible yarn- or fiber-based energy storing devices are attractive because of their small dimension, light weight, and suitability for integration into woven or textile application. Some Li-ion based yarn or fiber batteries were developed due to their performance advantages, realizing highly performing and practically safe wearable battery still remains a challenge. Here, high performance and safe yarn-based battery is demonstrated by embedding active materials into inner structure of yarn and using water based electrolyte. Thanks to biscrolling method, loading level of silver and zinc in yarn electrodes increased up to 99 wt%. Our high loaded Silver and Zinc yarn electrodes enables high linear capacity in liquid electrolyte (0.285 mAh/cm) and solid electrolyte (0.276 mAh/cm), which are significantly higher than previously reported fiber batteries. In additions, due to PVA-KOH based aqueous electrolyte, our yarn battery system is inflammable, non-explosive and safe. Consequently, these high-capacities enable our Silver-Zinc aqueous yarn battery to be applicable to the energy source of portable and wearable electronics like an electric watch. © 2018, The Author(s).1

    Optical imaging featuring both long working distance and high spatial resolution by correcting the aberration of a large aperture lens

    Get PDF
    High-resolution optical imaging within thick objects has been a challenging task due to the short working distance of conventional high numerical aperture (NA) objective lenses. Lenses with a large physical diameter and thus a large aperture, such as microscope condenser lenses, can feature both a large NA and a long working distance. However, such lenses suffer from strong aberrations. To overcome this problem, we present a method to correct the aberrations of a transmission-mode imaging system that is composed of two condensers. The proposed method separately identifies and corrects aberrations of illumination and collection lenses of up to 1.2 NA by iteratively optimizing the total intensity of the synthetic aperture images in the forward and phase-conjugation processes. At a source wavelength of 785 nm, we demonstrated a spatial resolution of 372 nm at extremely long working distances of up to 1.6 mm, an order of magnitude improvement in comparison to conventional objective lenses. Our method of converting microscope condensers to high-quality objectives may facilitate increases in the imaging depths of super-resolution and expansion microscopes. © The Author(s) 201

    Elastomeric Core/Conductive Sheath Fibers for Tensile and Torsional Strain Sensors

    No full text
    Motion sensing, aimed at detecting and monitoring mechanical deformation, has received significant attention in various industrial and research fields. In particular, fiber-structured mechanical strain sensors with carbon-based materials have emerged as promising alternatives for wearable applications owing to their wearability and adaptability to the human body. Various materials, structures, sensing mechanisms, and fabrication methods have been used to fabricate high-performance fiber strain sensors. Nevertheless, developing multi-modal strain sensors that can monitor multiple deformations remains to be accomplished. This study established core/sheath fiber multi-modal strain sensors using polymer and carbon nanotubes (CNTs). Specifically, a flexible and conductive CNT sheet was wrapped onto the elastomeric core fiber at a certain angle. This wrapping angle allowed the CNTs to mechanically deform under tensile and torsional deformations without fatal structural damage. The CNTs could sense both tensile and torsional strains through reversible structural changes during deformations. The fiber strain sensor exhibited an increase of 124.9% and 9.6% in the resistance during tensile and torsional deformations of 100% and 1250 rad/m, respectively

    Flexible pressure sensors using highly-oriented and free-standing carbon nanotube sheets

    No full text
    Carbon allotropes are strong candidates for pressure sensing materials in flexible electronics due to their extraordinary mechanical and electrical properties. However, the complexity of the conventional transfer process for these allotropes, the success of which is strongly dependent on the surface conditions of the substrates, limits their feasibility for use as pressure sensors. Thus, we propose a method to create flexible pressure sensors using highly-oriented and free-standing hydrophobic carbon nanotube (CNT) sheets. When drawn from a sidewall of a carbon nanotube forest, these sheets only require a single transfer process without any chemical treatment, thereby facilitating a simple, cost-effective transfer method. The resulting sensors exhibit high sensitivity and fast response characteristics for both statically and dynamically applied pressures. In addition, the highly-oriented structure of these CNT sheets results in distinctive response characteristics for bi-axially applied bending strains. It was also confirmed that the sheets can be easily transferred onto any substrate, including those with rough surfaces, due to the naturally formed free-standing structure. In this work, we present the intact transfer of a CNT sheet onto a micro-patterned substrate representing a rough surface and demonstrate the accompanying typical piezoresistive responses of the resulting pressure sensor. © 2018 Elsevier Ltd1

    Bio-Inspired Electronic Eyes and Synaptic Photodetectors for Mobile Artificial Vision

    No full text
    Conventional imaging and data processing devices are not ideal for mobile artificial vision applications, such as vision systems for drones and robots, because of the heavy and bulky multilens optics in the camera modules. Furthermore, the physically isolated image data processing units of conventional systems induce large power consumption and data latency. For mobile artificial vision applications, electronic eyes, including neuromorphic ones, have been developed inspired by biological eyes and neural networks. Here, we summarize the development of such bio-inspired electronic eyes and synaptic photodetectors (PDs). Bio-inspired electronic eyes, typically consisting of curved image sensor arrays, enable aberration-free imaging and module size miniaturization in addition to other advantageous optical features, such as wide field-of-view and deep depth-of-field. Furthermore, photodetecting devices with synaptic properties can efficiently enhance image contrast because of photon-triggered synaptic plasticity. Therefore, the signal-to-noise ratio of the acquired image can be enhanced, which facilitates efficient image recognition for machine vision. A brief summary of the remaining challenges and prospects concludes this review.11Nothe

    A Review of Yarn-Based One-Dimensional Supercapacitors

    No full text
    Energy storage in a one-dimensional format is increasingly vital for the functionality of wearable technologies and is garnering attention from various sectors, such as smart apparel, the Internet of Things, e-vehicles, and robotics. Yarn-based supercapacitors are a particularly compelling solution for wearable energy reserves owing to their high power densities and adaptability to the human form. Furthermore, these supercapacitors can be seamlessly integrated into textile fabrics for practical utility across various types of clothing. The present review highlights the most recent innovations and research directions related to yarn-based supercapacitors. Initially, we explore different types of electrodes and active materials, ranging from carbon-based nanomaterials to metal oxides and conductive polymers, that are being used to optimize electrochemical capacitance. Subsequently, we survey different methodologies for loading these active materials onto yarn electrodes and summarize innovations in stretchable yarn designs, such as coiling and buckling. Finally, we outline a few pressing research challenges and future research directions in this field

    Hierarchically porous, biaxially woven carbon nanotube sheet arrays for next-generation anion-exchange membrane water electrolyzers

    No full text
    The commercialization of anion-exchange membrane water electrolysis (AEMWE) requires the development of a highly efficient cathode. Here, we propose a novel cathode design based on a hierarchically porous, biaxially woven carbon nanotube sheet (CNTS) array, which increases the total surface area of the catalyst and improves the transport of ions, electrons, reactants, and products. In this design, where metals are supported on the CNTS (M_CNTS), catalyst nanoparticles for catalyzing the hydrogen evolution reaction (HER), i.e., non-noble or noble metal catalysts, are well dispersed on the biaxially woven CNTS substrate with square-shaped pores. Both types of catalysts (i.e., NiFeOx and Pt) enabled the M_CNTS electrode to exceed the AEMWE performance compared to the conventional electrode with densely packed nanoparticles. In particular, the Pt catalyst yielded a performance (4.0 A cm(-2) at 1.9 V) that is the highest to date. This is attributed to the three-dimensional porous structure of the M_CNTS design. Because the M_CNTS design performed reliably during AEMWE, it is an alternative to conventional cathodes.11Nsciescopu
    corecore