1,575 research outputs found

    Interferon regulatory factor-1 (irf-1) shapes both innate and cd8 + t cell immune responses against west nile virus infection

    Get PDF
    Interferon regulatory factor (IRF)-1 is an immunomodulatory transcription factor that functions downstream of pathogen recognition receptor signaling and has been implicated as a regulator of type I interferon (IFN)-αβ expression and the immune response to virus infections. However, this role for IRF-1 remains controversial because altered type I IFN responses have not been systemically observed in IRF-1 -/- mice. To evaluate the relationship of IRF-1 and immune regulation, we assessed West Nile virus (WNV) infectivity and the host response in IRF-1 -/- cells and mice. IRF-1 -/- mice were highly vulnerable to WNV infection with enhanced viral replication in peripheral tissues and rapid dissemination into the central nervous system. Ex vivo analysis revealed a cell-type specific antiviral role as IRF-1 -/- macrophages supported enhanced WNV replication but infection was unaltered in IRF-1 -/- fibroblasts. IRF-1 also had an independent and paradoxical effect on CD8 + T cell expansion. Although markedly fewer CD8 + T cells were observed in naïve animals as described previously, remarkably, IRF-1 -/- mice rapidly expanded their pool of WNV-specific cytolytic CD8 + T cells. Adoptive transfer and in vitro proliferation experiments established both cell-intrinsic and cell-extrinsic effects of IRF-1 on the expansion of CD8 + T cells. Thus, IRF-1 restricts WNV infection by modulating the expression of innate antiviral effector molecules while shaping the antigen-specific CD8 + T cell response

    U(1) effective confinement theory from SU(2) restricted gauge theory via the Julia-Toulouse Approach

    Get PDF
    We derive an U(1) effective theory of color confinement by applying the so-called Julia-Toulouse Approach for defects condensation to the SU(2) restricted gauge theory defined by means of the Cho decomposition of the non-abelian connection. Cho's geometric construction naturally displays the topological degrees of freedom of the theory and can be used to put the Yang-Mills action into an abelianized form under certain conditions. On the other hand, the use of the Julia-Toulouse prescription to deal with the monopole condensation leads to an effective action describing the phase whose dynamics is dominated by the magnetic condensate. The effective theory we found describes the interaction between external electric currents displaying a short-range Yukawa interaction plus a linear confinement term that governs the long distance physics.Comment: 7 page

    MRI size assessment of cerebral microvasculature using diffusion-time-dependent stimulated-echo acquisition: A feasibility study in rodent

    Get PDF
    In this study, a stimulated-echo (STE) method was employed to robustify the cerebral vessel size estimation nearair-tissue, bone-tissue interfaces, and large vessels. The proposed solution is to replace the relaxation rate changefrom gradient-echo (GRE) with that from STE with long diffusion time after the injection of an intravascularcontrast agent, superparamagnetic iron oxide nanoparticles. The corresponding diffusion length of STE is shorterthan the length over which the unwanted macroscopicfield inhomogeneities but is still longer than the corre-lation length of thefields induced by small vessels. Therefore, the unwantedfield inhomogeneities are refocused,while preserving microscopic susceptibility contrast from cerebral vessels. The mean vessel diameter (dimen-sionless) derived from the diffusion-time-varying STE method was compared to the mean vessel diameter ob-tained by a conventional spin-echo (SE) and GRE combination based on Monte-Carlo proton diffusion simulationsand in vivo rat experiments at 7 T. The in vivo mean vessel diameter from the MRI experiments was directlycompared to available reference mouse brain vasculature obtained by a knife-edge scanning microscope (KESM),which is considered to be the gold standard. Monte-Carlo simulation revealed that SE and GRE-based MRrelaxation rate changes (??R2and??R2*, respectively) can be enhanced using single STE-based MR relaxation ratechange (??RSTE) by regulating diffusion time, especially for small vessels. The in vivo mean vessel diameter fromthe STE method demonstrated a closer agreement with that from the KESM compared to the combined SE andGRE method, especially in the olfactory bulb and cortex. This study demonstrates that STE relaxation rate changescan be used as consistent measures for assessing small cerebral microvasculature, where macroscopicfield in-homogeneity is severe and signal contamination from adjacent large vessels is significant

    Explosive Percolation in the Human Protein Homology Network

    Full text link
    We study the explosive character of the percolation transition in a real-world network. We show that the emergence of a spanning cluster in the Human Protein Homology Network (H-PHN) exhibits similar features to an Achlioptas-type process and is markedly different from regular random percolation. The underlying mechanism of this transition can be described by slow-growing clusters that remain isolated until the later stages of the process, when the addition of a small number of links leads to the rapid interconnection of these modules into a giant cluster. Our results indicate that the evolutionary-based process that shapes the topology of the H-PHN through duplication-divergence events may occur in sudden steps, similarly to what is seen in first-order phase transitions.Comment: 13 pages, 6 figure

    Dyonic Non-Abelian Black Holes

    Get PDF
    We study static spherically symmetric dyonic black holes in Einstein-Yang-Mills-Higgs theory. As for the magnetic non-abelian black holes, the domain of existence of the dyonic non-abelian black holes is limited with respect to the horizon radius and the dimensionless coupling constant α\alpha, which is proportional to the ratio of vector meson mass and Planck mass. At a certain critical value of this coupling constant, α^\hat \alpha, the maximal horizon radius is attained. We derive analytically a relation between α^\hat \alpha and the charge of the black hole solutions and confirm this relation numerically. Besides the fundamental dyonic non-abelian black holes, we study radially excited dyonic non-abelian black holes and globally regular gravitating dyons.Comment: LaTeX, 22 pages, 16 figures, three figures added, file manipulation error in previous replac

    Supersymmetry and the positron excess in cosmic rays

    Get PDF
    Recently the HEAT balloon experiment has confirmed an excess of high-energy positrons in cosmic rays. They could come from annihilation of dark matter in the galactic halo. We discuss expectations for the positron signal in cosmic rays from the lightest superpartner. The simplest interpretations are incompatible with the size and shape of the excess if the relic LSPs evolved from thermal equilbrium. Non-thermal histories can describe a sufficient positron rate. Reproducing the energy spectrum is more challenging, but perhaps possible. The resulting light superpartner spectrum is compatible with collider physics, the muon anomalous magnetic moment, Z-pole electroweak data, and other dark matter searches.Comment: 4 pages, 2 figures, references added, minor wording change

    On Traversable Lorentzian Wormholes in the Vacuum Low Energy Effective String Theory in Einstein and Jordan Frames

    Full text link
    Three new classes (II-IV) of solutions of the vacuum low energy effective string theory in four dimensions are derived. Wormhole solutions are investigated in those solutions including the class I case both in the Einstein and in the Jordan (string) frame. It turns out that, of the eight classes of solutions investigated (four in the Einstein frame and four in the corresponding string frame), massive Lorentzian traversable wormholes exist in five classes. Nontrivial massless limit exists only in class I Einstein frame solution while none at all exists in the string frame. An investigation of test scalar charge motion in the class I solution in the two frames is carried out by using the Plebanski-Sawicki theorem. A curious consequence is that the motion around the extremal zero (Keplerian) mass configuration leads, as a result of scalar-scalar interaction, to a new hypothetical "mass" that confines test scalar charges in bound orbits, but does not interact with neutral test particles.Comment: 18 page

    Measurement of the 6s - 7p transition probabilities in atomic cesium and a revised value for the weak charge Q_W

    Get PDF
    We have measured the 6s - 7p_{1/2,3/2} transition probabilities in atomic cesium using a direct absorption technique. We use our result plus other previously measured transition rates to derive an accurate value of the vector transition polarizability \beta and, consequently, re-evaluate the weak charge Q_W. Our derived value Q_W=-72.65(49) agrees with the prediction of the standard model to within one standard deviation.Comment: 4 pages, 2 figure

    Specific Heat Study of the Magnetic Superconductor HoNi2B2C

    Full text link
    The complex magnetic transitions and superconductivity of HoNi2B2C were studied via the dependence of the heat capacity on temperature and in-plane field angle. We provide an extended, comprehensive magnetic phase diagram for B // [100] and B // [110] based on the thermodynamic measurements. Three magnetic transitions and the superconducting transition were clearly observed. The 5.2 K transition (T_{N}) shows a hysteresis with temperature, indicating the first order nature of the transition at B=0 T. The 6 K transition (T_{M}), namely the onset of the long-range ordering, displays a dramatic in-plane anisotropy: T_{M} increases with increasing magnetic field for B // [100] while it decreases with increasing field for B // [110]. The anomalous anisotropy in T_{M} indicates that the transition is related to the a-axis spiral structure. The 5.5 K transition (T^{*}) shows similar behavior to the 5.2 K transition, i.e., a small in-plane anisotropy and scaling with Ising model. This last transition is ascribed to the change from a^{*} dominant phase to c^{*} dominant phase.Comment: 9 pages, 11 figure
    corecore