1,070 research outputs found

    LANIT: Language-Driven Image-to-Image Translation for Unlabeled Data

    Full text link
    Existing techniques for image-to-image translation commonly have suffered from two critical problems: heavy reliance on per-sample domain annotation and/or inability of handling multiple attributes per image. Recent truly-unsupervised methods adopt clustering approaches to easily provide per-sample one-hot domain labels. However, they cannot account for the real-world setting: one sample may have multiple attributes. In addition, the semantics of the clusters are not easily coupled to the human understanding. To overcome these, we present a LANguage-driven Image-to-image Translation model, dubbed LANIT. We leverage easy-to-obtain candidate attributes given in texts for a dataset: the similarity between images and attributes indicates per-sample domain labels. This formulation naturally enables multi-hot label so that users can specify the target domain with a set of attributes in language. To account for the case that the initial prompts are inaccurate, we also present prompt learning. We further present domain regularization loss that enforces translated images be mapped to the corresponding domain. Experiments on several standard benchmarks demonstrate that LANIT achieves comparable or superior performance to existing models.Comment: Accepted to CVPR 2023. Project Page: https://ku-cvlab.github.io/LANIT

    Therapeutic singing-induced swallowing exercise for dysphagia in advanced-stage Parkinson’s disease

    Get PDF
    BackgroundWith longer life spans and medical advancements, the rising number of patients with advanced-stage Parkinson’s disease (PD) warrants attention. Current literature predominantly addresses dementia and fall management in these patients. However, exploring the impact of swallowing function on patients with advanced PD is crucial. Previous research has demonstrated notable enhancements in the quality of life related to voice for participants following a group singing-intervention program. To further elucidate the effect of individual singing-induced swallowing exercises, our study aimed to investigate the quantitative and qualitative effects of therapeutic singing on swallowing function in patients with advanced PD in comparison to a matched usual care control group. The hypothesis of this study is that therapeutic singing-induced swallowing exercises can assist to maintain swallowing function in patients with advanced PD.MethodsThis prospective matched control study compared the effects of a 6-week therapeutic singing-based swallowing intervention on swallowing function and quality of life in patients with advanced PD. The intervention group received individual sessions with a music therapist and conventional individual physical therapy. The control group received the same standard physical therapy for 6 weeks without music intervention. The primary outcome measure was Video Fluoroscopic Dysphagia Scale (VDS).ResultsThe study revealed that the intervention group maintained swallowing function, whereas the control group experienced deterioration, indicating significant time-dependent changes in Penetration-Aspiration Scale (PAS), National Institutes of Health-Swallowing Safety Scale (NIH-SSS), and VDS. Analysis of PAS and NIH-SSS liquid food scores in both groups showed significant time effects. However, the intervention group exhibited no significant differences between the pre- and post-tests, indicating preservation of the swallowing function. VDS of liquid food indicated an interaction effect between time and group in the pharyngeal phase and total scores. The Swallowing-Quality of Life showed significant time-effect improvement in the intervention group.ConclusionTherapeutic singing exercises may help maintain swallowing function in advanced PD patients, potentially enhancing quality of life related to swallowing in those with advanced-stage diseases.Clinical trial registrationhttps://cris.nih.go.kr/cris/search/listDetail.do, identifier KCT0008644

    Case report: Intrathecal baclofen therapy improved gait pattern in a stroke patient with spastic dystonia

    Get PDF
    BackgroundIntrathecal baclofen (ITB) therapy, a viable alternative for unsuitable candidates of conventional spasticity medications, is a preferred method of administration over the oral route. Owing to its enhanced bioavailability, ITB ensures a more effective delivery at the target site.ObjectiveThere is a lack of conclusive evidence regarding the use of ITB treatment in managing ambulatory patients with spastic dystonia. Before ITB pump implantation, patients commonly undergo an ITB bolus injection trial to rule out potential adverse reactions and verify the therapeutic effects on hypertonic issues. In this report, we highlight a case of spastic dystonia, particularly focusing on an ambulatory patient who demonstrated significant improvement in both the modified Ashworth scale (MAS) score and gait pattern following the ITB injection trial.Case reportThis case report outlines the medical history of a 67-year-old male diagnosed with left-side hemiplegia and spastic dystonia, resulting from his second episode of intracranial hemorrhage in the right thalamus. An ITB injection trial was initiated because the patient was not suitable for continued botulinum toxin injections and oral medications. This was due to the persistent occurrence of spastic dystonia in both the upper and lower extremities. The patient underwent a four-day ITB injection trial with progressively increasing doses, resulting in improved MAS scores and gait parameters, including cadence, step length, step time, stride length, and stride time were increased. Particularly, kinematic gait analysis demonstrates a substantial improvement of increased knee flexion in the swing phase in stiff knee gait pattern. These findings indicated a gradual reduction in spasticity-related symptoms, signifying the positive effect of the ITB injection trial. The patient eventually received an ITB pump implantation.ConclusionIn this post-stroke patient with spastic dystonia, ITB therapy has demonstrated effective and substantial management of spasticity, along with improvement in gait patterns

    A Transcriptome Approach Toward Understanding Fruit Softening in Persimmon

    Get PDF
    Persimmon (Diospyros kaki Thunb.), which is a climacteric fruit, softens in 3–5 weeks after harvest. However, little is known regarding the transcriptional changes that underlie persimmon ripening. In this study, high-throughput de novo RNA sequencing was performed to examine differential expression between freshly harvested (FH) and softened (ST) persimmon fruit peels. Using the Illumina HiSeq platform, we obtained 259,483,704 high quality reads and 94,856 transcripts. After the removal of redundant sequences, a total of 31,258 unigenes were predicted, 1,790 of which were differentially expressed between FH and ST persimmon (1,284 up-regulated and 506 down-regulated in ST compared with FH). The differentially expressed genes (DEGs) were further subjected to KEGG pathway analysis. Several pathways were found to be up-regulated in ST persimmon, including “amino sugar and nucleotide sugar metabolism.” Pathways down-regulated in ST persimmon included “photosynthesis” and “carbon fixation in photosynthetic organisms.” Expression patterns of genes in these pathways were further confirmed using quantitative real-time RT-PCR. Ethylene gas production during persimmon softening was monitored with gas chromatography and found to be correlated with the fruit softening. Transcription involved in ethylene biosynthesis, perception and signaling was up-regulated. On the whole, this study investigated the key genes involved in metabolic pathways of persimmon fruit softening, especially implicated in increased sugar metabolism, decreased photosynthetic capability, and increased ethylene production and other ethylene-related functions. This transcriptome analysis provides baseline information on the identity and modulation of genes involved in softening of persimmon fruits and can underpin the future development of technologies to delay softening in persimmon

    A genome-wide association study for the fatty acid composition of breast meat in an F2 crossbred chicken population

    Get PDF
    The composition of fatty acids determines the flavor and quality of meat. Flavor compounds are generated during the cooking process by the decomposition of volatile fatty acids via lipid oxidation. A number of research on candidate genes related to fatty acid content in livestock species have been published. The majority of these studies focused on pigs and cattle; the association between fatty acid composition and meat quality in chickens has rarely been reported. Therefore, this study investigated candidate genes associated with fatty acid composition in chickens. A genome-wide association study (GWAS) was performed on 767 individuals from an F2 crossbred population of Yeonsan Ogye and White Leghorn chickens. The Illumina chicken 60K significant single-nucleotide polymorphism (SNP) genotype data and 30 fatty acids (%) in the breast meat of animals slaughtered at 10 weeks of age were analyzed. SNPs were shown to be significant in 15 traits: C10:0, C14:0, C18:0, C18:1n-7, C18:1n-9, C18:2n-6, C20:0, C20:2, C20:3n-6, C20:4n-6, C20:5n-3, C24:0, C24:1n-9, monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA). These SNPs were mostly located on chromosome 10 and around the following genes: ACSS3, BTG1, MCEE, PPARGC1A, ACSL4, ELOVL4, CYB5R4, ME1, and TRPM1. Both oleic acid and arachidonic acid contained the candidate genes: MCEE and TRPM1. These two fatty acids are antagonistic to each other and have been identified as traits that contribute to the production of volatile fatty acids. The results of this study improve our understanding of the genetic mechanisms through which fatty acids in chicken affect the meat flavor

    Exosomes from Human Adipose Tissue-Derived Mesenchymal Stem Cells Promote Epidermal Barrier Repair by Inducing de Novo Synthesis of Ceramides in Atopic Dermatitis.

    Get PDF
    Atopic dermatitis (AD) is a multifactorial, heterogeneous disease associated with epidermal barrier disruption and intense systemic inflammation. Previously, we showed that exosomes derived from human adipose tissue-derived mesenchymal stem cells (ASC-exosomes) attenuate AD-like symptoms by reducing multiple inflammatory cytokine levels. Here, we investigated ASC-exosomes' effects on skin barrier restoration by analyzing protein and lipid contents. We found that subcutaneous injection of ASC-exosomes in an oxazolone-induced dermatitis model remarkably reduced trans-epidermal water loss, while enhancing stratum corneum (SC) hydration and markedly decreasing the levels of inflammatory cytokines such as IL-4, IL-5, IL-13, TNF-α, IFN-γ, IL-17, and TSLP, all in a dose-dependent manner. Interestingly, ASC-exosomes induced the production of ceramides and dihydroceramides. Electron microscopic analysis revealed enhanced epidermal lamellar bodies and formation of lamellar layer at the interface of the SC and stratum granulosum with ASC-exosomes treatment. Deep RNA sequencing analysis of skin lesions demonstrated that ASC-exosomes restores the expression of genes involved in skin barrier, lipid metabolism, cell cycle, and inflammatory response in the diseased area. Collectively, our results suggest that ASC-exosomes effectively restore epidermal barrier functions in AD by facilitating the de novo synthesis of ceramides, resulting in a promising cell-free therapeutic option for treating AD
    • …
    corecore