4,467 research outputs found

    Numerical methods for high-dimensional probability density function equations

    Get PDF
    In this paper we address the problem of computing the numerical solution to kinetic partial differential equations involving many phase variables. These types of equations arise naturally in many different areas of mathematical physics, e.g., in particle systems (Liouville and Boltzmann equations), stochastic dynamical systems (Fokker-Planck and Dostupov-Pugachev equations), random wave theory (Malakhov-Saichev equations) and coarse-grained stochastic systems (Mori-Zwanzig equations). We propose three different classes of new algorithms addressing high-dimensionality: The first one is based on separated series expansions resulting in a sequence of low-dimensional problems that can be solved recursively and in parallel by using alternating direction methods. The second class of algorithms relies on truncation of interaction in low-orders that resembles the Bogoliubov-Born-Green-Kirkwood-Yvon (BBGKY) framework of kinetic gas theory and it yields a hierarchy of coupled probability density function equations. The third class of algorithms is based on high-dimensional model representations, e.g., the ANOVA method and probabilistic collocation methods. A common feature of all these approaches is that they are reducible to the problem of computing the solution to high-dimensional equations via a sequence of low-dimensional problems. The effectiveness of the new algorithms is demonstrated in numerical examples involving nonlinear stochastic dynamical systems and partial differential equations, with up to 120 variables

    Optimal deployments of defense mechanisms for the internet of things

    Full text link
    Internet of Things (IoT) devices can be exploited by the attackers as entry points to break into the IoT networks without early detection. Little work has taken hybrid approaches that combine different defense mechanisms in an optimal way to increase the security of the IoT against sophisticated attacks. In this work, we propose a novel approach to generate the strategic deployment of adaptive deception technology and the patch management solution for the IoT under a budget constraint. We use a graphical security model along with three evaluation metrics to measure the effectiveness and efficiency of the proposed defense mechanisms. We apply the multi-objective genetic algorithm (GA) to compute the {\em Pareto optimal} deployments of defense mechanisms to maximize the security and minimize the deployment cost. We present a case study to show the feasibility of the proposed approach and to provide the defenders with various ways to choose optimal deployments of defense mechanisms for the IoT. We compare the GA with the exhaustive search algorithm (ESA) in terms of the runtime complexity and performance accuracy in optimality. Our results show that the GA is much more efficient in computing a good spread of the deployments than the ESA, in proportion to the increase of the IoT devices

    Visualization of pseudogenes in intracellular bacteria reveals the different tracks to gene destruction

    Get PDF
    Variably present genes and pseudogenes in Rickettsia species tend to have been acquired more recently and to be more divergent from the genes conserved across all specie

    Nucleon Spin in QCD: Old Crisis and New Resolution

    Full text link
    We discuss the shortfalls of existing resolutions of the long-standing gauge invariance problem of the canonical decomposition of the nucleon spin to the spin and angular momentum of quarks and gluons. We provide two logically flawless expressions of nucleon spin which have different physical meanings, using the gauge independent Abelian decomposition. The first one is based on the assumption that all gluons (binding and valence gluons) contribute to the nucleon spin, but the second one is based on the assumption that only the binding gluons (and the quarks) contribute to it. We propose the second expression to be the physically correct one
    corecore