30,624 research outputs found

    Dilaton as a Dark Matter Candidate and its Detection

    Full text link
    Assuming that the dilaton is the dark matter of the universe, we propose an experiment to detect the relic dilaton using the electromagnetic resonant cavity, based on the dilaton-photon conversion in strong electromagnetic background. We calculate the density of the relic dilaton, and estimate the dilaton mass for which the dilaton becomes the dark matter of the universe. With this we calculate the dilaton detection power in the resonant cavity, and compare it with the axion detection power in similar resonant cavity experiment.Comment: 23 pages, 2 figure

    Asymptotic Quasinormal Frequencies of Different Spin Fields in Spherically Symmetric Black Holes

    Get PDF
    We consider the asymptotic quasinormal frequencies of various spin fields in Schwarzschild and Reissner-Nordstr\"om black holes. In the Schwarzschild case, the real part of the asymptotic frequency is ln3 for the spin 0 and the spin 2 fields, while for the spin 1/2, the spin 1, and the spin 3/2 fields it is zero. For the non-extreme charged black holes, the spin 3/2 Rarita-Schwinger field has the same asymptotic frequency as that of the integral spin fields. However, the asymptotic frequency of the Dirac field is different, and its real part is zero. For the extremal case, which is relevant to the supersymmetric consideration, all the spin fields have the same asymptotic frequency, the real part of which is zero. For the imaginary parts of the asymptotic frequencies, it is interesting to see that it has a universal spacing of 1/4M1/4M for all the spin fields in the single-horizon cases of the Schwarzschild and the extreme Reissner-Nordstr\"om black holes. The implications of these results to the universality of the asymptotic quasinormal frequencies are discussed.Comment: Revtex, 17 pages, 3 eps figures; one table, some remarks and references added to section I

    Quarkonium Wave Functions at the Origin

    Get PDF
    We tabulate values of the radial Schr\"{o}dinger wave function or its first nonvanishing derivative at zero quark-antiquark separation, for ccˉc\bar{c}, cbˉc\bar{b}, and bbˉb\bar{b} levels that lie below, or just above, flavor threshold. These quantities are essential inputs for evaluating production cross sections for quarkonium states.Comment: 9 pages, RevTeX, no figure

    Gluon fragmentation to 1D2^1D_2 quarkonia

    Full text link
    Gluon fragmentation to heavy JPC=2−+J^{PC}=2^{-+} quarkonia is studied herein. We compute these D-wave states' polarized fragmentation functions and find that they are enhanced by large numerical prefactors. The prospects for detecting the lowest lying 1D2^1D_2 charmonium state at the Tevatron are discussed.Comment: 10 pages with 4 uuencoded figures, CALT-68-195

    Phenomenological Theory of Superconductivity and Magnetism in Ho1−x_{1-x}Dyx_xNi2_2B2_2C

    Full text link
    The coexistence of the superconductivity and magnetism in the Ho1−x_{1-x}Dyx_xNi2_2B2_2C is studied by using Ginzburg-Landau theory. This alloy shows the coexistence and complex interplay of superconducting and magnetic order. We propose a phenomenological model which includes two magnetic and two superconducting order parameters accounting for the multi-band structure of this material. We describe phenomenologically the magnetic fluctuations and order and demonstrate that they lead to anomalous behavior of the upper critical field. The doping dependence of TcT_c in Ho1−x_{1-x}Dyx_xNi2_2B2_2C showing a reentrance behavior are analyzed yielding a very good agreement with experimental data.Comment: 4 pages, 3 figures, REVTeX, submitted to PR

    Compressible Sub-Alfvenic MHD turbulence in Low-beta Plasmas

    Full text link
    We present a model for compressible sub-Alfvenic isothermal magnetohydrodynamic (MHD) turbulence in low-beta plasmas and numerically test it. We separate MHD fluctuations into 3 distinct families - Alfven, slow, and fast modes. We find that, production of slow and fast modes by Alfvenic turbulence is suppressed. As a result, Alfven modes in compressible regime exhibit scalings and anisotropy similar to those in incompressible regime. Slow modes passively mimic Alfven modes. However, fast modes show isotropy and a scaling similar to acoustic turbulence.Comment: 4 pages, 8 figures, Phys. Rev. Lett., in pres

    Modelling the dynamics of global monopoles

    Get PDF
    A thin wall approximation is exploited to describe a global monopole coupled to gravity. The core is modelled by de Sitter space; its boundary by a thin wall with a constant energy density; its exterior by the asymptotic Schwarzschild solution with negative gravitational mass MM and solid angle deficit, ΔΩ/4π=8πGη2\Delta\Omega/4\pi = 8\pi G\eta^2, where η\eta is the symmetry breaking scale. The deficit angle equals 4π4\pi when η=1/8πG≡Mp\eta=1/\sqrt{8\pi G} \equiv M_p. We find that: (1) if η<Mp\eta <M_p, there exists a unique globally static non-singular solution with a well defined mass, M0<0M_0<0. M0M_0 provides a lower bound on MM. If M0<M<0M_0<M<0, the solution oscillates. There are no inflating solutions in this symmetry breaking regime. (2) if η≄Mp\eta \ge M_p, non-singular solutions with an inflating core and an asymptotically cosmological exterior will exist for all M<0M<0. (3) if η\eta is not too large, there exists a finite range of values of MM where a non-inflating monopole will also exist. These solutions appear to be metastable towards inflation. If MM is positive all solutions are singular. We provide a detailed description of the configuration space of the model for each point in the space of parameters, (η,M)(\eta, M) and trace the wall trajectories on both the interior and the exterior spacetimes. Our results support the proposal that topological defects can undergo inflation.Comment: 44 pages, REVTeX, 11 PostScript figures, submitted to the Physical Review D. Abstract's correcte

    Doping - dependent superconducting gap anisotropy in the two-dimensional 10-3-8 pnictide Ca10_{10}(Pt3_3As8_8)[(Fe1−x_{1-x}Ptx_{x})2_2As2_2]5_5

    Full text link
    The characteristic features of Ca10_{10}(Pt3_3As8_8)[(Fe1−x_{1-x}Ptx_x)2_2As2_2]5_5 ("10-3-8") superconductor are relatively high anisotropy and a clear separation of superconductivity and structural/magnetic transitions, which allows studying the superconducting gap without complications due to the coexisting order parameters. The London penetration depth, measured in underdoped single crystals of 10-3-8 (x=x = 0.028, 0.041, 0.042, and 0.097), shows behavior remarkably similar to other Fe-based superconductors, exhibiting robust power-law, Δλ(T)=ATn\Delta \lambda(T) = A T^n. The exponent nn decreases from 2.36 (x=x = 0.097, close to optimal doping) to 1.7 (x=x = 0.028, a heavily underdoped composition), suggesting that the superconducting gap becomes more anisotropic at the dome edge. A similar trend is found in low-anisotropy superconductors based on BaFe2_2As2_2 ("122"), implying that it is an intrinsic property of superconductivity in iron pnictides, unrelated to the coexistence of magnetic order and superconductivity or the anisotropy of the normal state. Overall this doping dependence is consistent with s±s_{\pm} pairing competing with intra-band repulsion

    Color Reflection Invariance and Monopole Condensation in QCD

    Get PDF
    We review the quantum instability of the Savvidy-Nielsen-Olesen (SNO) vacuum of the one-loop effective action of SU(2) QCD, and point out a critical defect in the calculation of the functional determinant of the gluon loop in the SNO effective action. We prove that the gauge invariance, in particular the color reflection invariance, exclude the unstable tachyonic modes from the gluon loop integral. This guarantees the stability of the magnetic condensation in QCD.Comment: 28 pages, 3 figures, JHEP styl
    • 

    corecore