11 research outputs found

    Trichosanthes kirilowii

    Get PDF
    Trichosanthes kirilowii tuber is a traditional medicine which exhibits various medicinal effects including antidiabetic and anticancer activities in several cancer cells. Recently, it was reported that Cucurbitacin D (CuD) isolated from Trichosanthes kirilowii also induces apoptosis in several cancer cells. Constitutive signal transducer and activator of transcription 3 (STAT3), which is an oncogenic transcription factor, is often observed in many human malignant tumor, including breast cancer. In the present study, we tested whether Trichosanthes kirilowii ethanol extract (TKE) or CuD suppresses cell growth and induces apoptosis through inhibition of STAT3 activity in breast cancer cells. We found that both TKE and CuD suppressed proliferation and induced apoptosis and G2/M cell cycle arrest in MDA-MB-231 breast cancer cells by inhibiting STAT3 phosphorylation. In addition, both TKE and CuD inhibited nuclear translocation and transcriptional activity of STAT3. Taken together, our results indicate that TKE and its derived compound, CuD, could be potent therapeutic agents for breast cancer, blocking tumor cell proliferation and inducing apoptosis through suppression of STAT3 activity

    Alterations of lipid-related genes during anti-tuberculosis treatment: insights into host immune responses and potential transcriptional biomarkers

    Get PDF
    BackgroundThe optimal diagnosis and treatment of tuberculosis (TB) are challenging due to underdiagnosis and inadequate treatment monitoring. Lipid-related genes are crucial components of the host immune response in TB. However, their dynamic expression and potential usefulness for monitoring response to anti-TB treatment are unclear. MethodologyIn the present study, we used a targeted, knowledge-based approach to investigate the expression of lipid-related genes during anti-TB treatment and their potential use as biomarkers of treatment response. Results and discussionThe expression levels of 10 genes (ARPC5, ACSL4, PLD4, LIPA, CHMP2B, RAB5A, GABARAPL2, PLA2G4A, MBOAT2, and MBOAT1) were significantly altered during standard anti-TB treatment. We evaluated the potential usefulness of this 10-lipid-gene signature for TB diagnosis and treatment monitoring in various clinical scenarios across multiple populations. We also compared this signature with other transcriptomic signatures. The 10-lipid-gene signature could distinguish patients with TB from those with latent tuberculosis infection and non-TB controls (area under the receiver operating characteristic curve > 0.7 for most cases); it could also be useful for monitoring response to anti-TB treatment. Although the performance of the new signature was not better than that of previous signatures (i.e., RISK6, Sambarey10, Long10), our results suggest the usefulness of metabolism-centric biomarkersConclusionsLipid-related genes play significant roles in TB pathophysiology and host immune responses. Furthermore, transcriptomic signatures related to the immune response and lipid-related gene may be useful for TB diagnosis and treatment monitoring

    Semi-Automated Therapeutic Drug Monitoring as a Pillar toward Personalized Medicine for Tuberculosis Management

    No full text
    Standard tuberculosis (TB) management has failed to control the growing number of drug-resistant TB cases worldwide. Therefore, innovative approaches are required to eradicate TB. Model-informed precision dosing and therapeutic drug monitoring (TDM) have become promising tools for adjusting anti-TB drug doses corresponding with individual pharmacokinetic profiles. These are crucial to improving the treatment outcome of the patients, particularly for those with complex comorbidity and a high risk of treatment failure. Despite the actual benefits of TDM at the bedside, conventional TDM encounters several hurdles related to laborious, time-consuming, and costly processes. Herein, we review the current practice of TDM and discuss the main obstacles that impede it from successful clinical implementation. Moreover, we propose a semi-automated TDM approach to further enhance precision medicine for TB management

    CYP2C19 Contributes to THP-1-Cell-Derived M2 Macrophage Polarization by Producing 11,12- and 14,15-Epoxyeicosatrienoic Acid, Agonists of the PPARγ Receptor

    No full text
    Although the functional roles of M1 and M2 macrophages in the immune response and drug resistance are important, the expression and role of cytochrome P450s (CYPs) in these cells remain largely unknown. Differential expression of the 12 most common CYPs (CYP1A1, 1A2, 1B1, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1, 2J2, 3A4, and 3A5) were screened in THP-1-cell-derived M1 and M2 macrophages using reverse transcription PCR. CYP2C19 was highly expressed in THP-1-cell-derived M2 macrophages, but it was negligibly expressed in THP-1-cell-derived M1 macrophages at the mRNA and protein levels as analyzed by reverse transcription quantitative PCR and Western blot, respectively. CYP2C19 enzyme activity was also very high in THP-1-cell-derived M2 compared to M1 macrophages (> 99%, p p < 0.01). Therefore, it was suggested that CYP2C19 may contribute to M2 cell polarization by producing PPARγ agonists. Further studies are needed to understand the endogenous role of CYP2C19 in M2 macrophages with respect to immunologic function and cell polarization

    Water Extract of Deer Bones Activates Macrophages and Alleviates Neutropenia

    No full text
    Extracts from deer bones, called nok-gol in Korean, have long been used to invigorate Qi. While neutropenia is not well detected in normal physiological condition, it could be a cause of severe problems to develop diseases such as infectious and cancerous diseases. Thus, a prevention of neutropenia in normal physiology and pathophysiological states is important for maintaining Qi and preventing disease progress. In cell biological aspects, activated macrophages are known to prevent neutropenia. In this study, we demonstrate that water extract of deer bone (herein, NG) prevents neutropenia by activating macrophages. In mouse neutropenia model system in vivo where ICR mice were treated with cyclophosphamide to immunosuppress, an oral administration of NG altered the number of blood cells including lymphocytes, neutrophils, basophils, and eosinophils. This in vivo effect of NG was relevant to that of granulocyte colony stimulating factor (G-CSF) that was known to improve neutropenia. Our in vitro studies further showed that NG treatment increased intracellular reactive oxygen species (ROS) and promoted macrophagic differentiation of mouse monocytic Raw264.7 cells in a dose-dependent manner. In addition, NG enhanced nitric oxide (NO) synthesis and secretions of cytokines including IL-6 and TNF-α. Consistently, NG treatment induced phosphorylation of ERK, JNK, IKK, IκBα, and NF-κB in Raw264.7 cells. Thus, our data suggest that NG is helpful for alleviating neutropenia

    Comprehensive lipid profiles investigation reveals host metabolic and immune alterations during anti-tuberculosis treatment: Implications for therapeutic monitoring

    No full text
    In this study, we investigated the lipidome of tuberculosis patients during standard chemotherapy to discover biosignatures that could aid therapeutic monitoring. UPLC-QToF MS was used to analyze 82 baseline and treatment plasma samples of patients with pulmonary tuberculosis. Subsequently, a data-driven and knowledge-based workflow, including robust annotation, statistical analysis, and functional analysis, was applied to assess lipid profiles during treatment. Overall, the lipids species from 17 lipid subclasses were significantly altered by anti-tuberculosis chemotherapy. Cholesterol ester (CE), monoacylglycerols, and phosphatidylcholine (PC) were upregulated, whereas triacylglycerols, sphingomyelin, and ether-linked phosphatidylethanolamines (PE O-) were downregulated. Notably, PCs demonstrated a clear upward expression pattern during tuberculosis treatment. Several lipid species were identified as potential biomarkers for therapeutic monitoring, such as PC(42:6), PE(O-40:5), CE(24:6), and dihexosylceramide Hex2Cer(34:2;2 O). Functional and lipid gene enrichment analysis revealed alterations in pathways related to lipid metabolism and host immune responses. In conclusion, this study provides a foundation for the use of lipids as biomarkers for clinical management of tuberculosis

    Risk adjustment model for tuberculosis compared to non-tuberculosis mycobacterium or latent tuberculosis infection: Center for Personalized Precision Medicine of Tuberculosis (cPMTb) cohort database

    No full text
    Abstract Background The Center for Personalized Precision Medicine of Tuberculosis (cPMTb) was constructed to develop personalized pharmacotherapeutic systems for tuberculosis (TB). This study aimed to introduce the cPMTb cohort and compare the distinct characteristics of patients with TB, non-tuberculosis mycobacterium (NTM) infection, or latent TB infection (LTBI). We also determined the prevalence and specific traits of polymorphisms in N-acetyltransferase-2 (NAT2) and solute carrier organic anion transporter family member 1B1 (SLCO1B1) phenotypes using this prospective multinational cohort. Methods Until August 2021, 964, 167, and 95 patients with TB, NTM infection, and LTBI, respectively, were included. Clinical, laboratory, and radiographic data were collected. NAT2 and SLCO1B1 phenotypes were classified by genomic DNA analysis. Results Patients with TB were older, had lower body mass index (BMI), higher diabetes rate, and higher male proportion than patients with LTBI. Patients with NTM infection were older, had lower BMI, lower diabetes rate, higher previous TB history, and higher female proportion than patients with TB. Patients with TB had the lowest albumin levels, and the prevalence of the rapid, intermediate, and slow/ultra-slow acetylator phenotypes were 39.2%, 48.1%, and 12.7%, respectively. The prevalence of rapid, intermediate, and slow/ultra-slow acetylator phenotypes were 42.0%, 44.6%, and 13.3% for NTM infection, and 42.5%, 48.3%, and 9.1% for LTBI, respectively, which did not differ significantly from TB. The prevalence of the normal, intermediate, and lower transporter SLCO1B1 phenotypes in TB, NTM, and LTBI did not differ significantly; 74.9%, 22.7%, and 2.4% in TB; 72.0%, 26.1%, and 1.9% in NTM; and 80.7%, 19.3%, and 0% in LTBI, respectively. Conclusions Understanding disease characteristics and identifying pharmacokinetic traits are fundamental steps in optimizing treatment. Further longitudinal data are required for personalized precision medicine. Trial registration This study registered ClinicalTrials.gov NO. NCT05280886

    Development of plasma sources and diagnostics for the simulation of fusion edge plasmas

    No full text
    © 2022, The Korean Physical Society.Although the research on divertors and scrape-off layers (SOLs) has been not as focused on as the recent success of the Korean fusion program, a few linear plasma devices have been developed for simulating divertor and SOL plasmas: (1) diversified plasma simulator (DiPS), a versatile linear machine, has been developed for simulations of divertor and space plasmas with various electric probes, such as single, triple, and Mach Probes and gridded energy analyzer. DiPS consists of two major parts: a divertor plasma simulator with a LaB 6 DC plasma source and a space plasma simulator with a helicon RF plasma source, (2) divertor plasma simulator-1 (DiPS-1) is a part of DiPS with only a LaB 6 cathode, where a low-power laser-induced fluorescence (LIF) is added and more electric probe diagnostics are augmented; it is dedicated only for fusion edge and divertor plasmas, (3) Divertor Plasma Simulator-2 (DiPS-2) has been modified from the DiPS-1 by adding a magnetic nozzle with a limiter structure and by removing the helicon source and space chamber. DiPS-2 is a linear plasma device with a 4-inch LaB 6 cathode, the same as DiPS-1, and it is focused on the development of various diagnostics, such as those used for LIF and laser Thomson scattering (LTS) along with various electric probes, on the divertor and scrape-off plasmas and on the plasma-material interaction (PMI) research, such as that of tungsten and graphite as plasma-facing components (PFCs), (4) A Multi-Purpose Plasma (MP 2) device is a renovation of the Hanbit mirror device [Kwon et al., Nucl. Fusion 43, 686 (2003)] with the installation of two plasma sources: LaB 6 (DC) and helicon (RF) plasma sources. A honeycomb-like large-area LaB 6 (HLA-LaB 6) cathode has been developed for the divertor plasma simulation to improve the resistance against the thermal shock fragility for large (8-inch) and high density plasma generation, (5) DiPS-2 has been augmented by adding another cylindrical device, called the Dust interaction with Surfaces Chamber (DiSC) for the generation and diagnostics of dusts. This combined system (DiPS-2+DiSC) has added two more diagnostics: Laser Photo-Detachment (LPD) for dust density and laser Mie Scattering (LMS) for dust size. Moreover, dusts or negative ions have been analyzed by using electric probes and capacitive diagram gauges in Transport and Removal of Dusts (TReD) device.N
    corecore