2,381 research outputs found

    Improving the sensitivity of stop searches with on-shell constrained invariant mass variables

    Full text link
    The search for light stops is of paramount importance, both in general as a promising path to the discovery of beyond the standard model physics and more specifically as a way of evaluating the success of the naturalness paradigm. While the LHC experiments have ruled out much of the relevant parameter space, there are "stop gaps", i.e., values of sparticle masses for which existing LHC analyses have relatively little sensitivity to light stops. We point out that techniques involving on-shell constrained M_2 variables can do much to enhance sensitivity in this region and hence help close the stop gaps. We demonstrate the use of these variables for several benchmark points and describe the effect of realistic complications, such as detector effects and combinatorial backgrounds, in order to provide a useful toolkit for light stop searches in particular, and new physics searches at the LHC in general.Comment: 49 pages, 28 figures, revised version published in JHEP, references adde

    On-shell constrained M2M_2 variables with applications to mass measurements and topology disambiguation

    Full text link
    We consider a class of on-shell constrained mass variables that are 3+1 dimensional generalizations of the Cambridge MT2M_{T2} variable and that automatically incorporate various assumptions about the underlying event topology. The presence of additional on-shell constraints causes their kinematic distributions to exhibit sharper endpoints than the usual MT2M_{T2} distribution. We study the mathematical properties of these new variables, e.g., the uniqueness of the solution selected by the minimization over the invisible particle 4-momenta. We then use this solution to reconstruct the masses of various particles along the decay chain. We propose several tests for validating the assumed event topology in missing energy events from new physics. The tests are able to determine: 1) whether the decays in the event are two-body or three-body, 2) if the decay is two-body, whether the intermediate resonances in the two decay chains are the same, and 3) the exact sequence in which the visible particles are emitted from each decay chain.Comment: 44pages, 17 figures. revised version, published in JHEP. Minor addition: a paragraph discussing the effect on the background at the end of section 5.

    Inverse mass matrix via the method of localized lagrange multipliers

    Get PDF
    An efficient method for generating the mass matrix inverse is presented, which can be tailored to improve the accuracy of target frequency ranges and/or wave contents. The present method bypasses the use of biorthogonal construction of a kernel inverse mass matrix that requires special procedures for boundary conditions and free edges or surfaces, and constructs the free-free inverse mass matrix employing the standard FEM procedure. The various boundary conditions are realized by the method of localized Lagrange multipliers. Numerical experiments with the proposed inverse mass matrix method are carried out to validate the effectiveness proposed technique when applied to vibration analysis of bars and beams. A perfect agreement is found between the exact inverse of the mass matrix and its direct inverse computed through biorthogonal basis functions

    OPTIMASS: A Package for the Minimization of Kinematic Mass Functions with Constraints

    Get PDF
    Reconstructed mass variables, such as M2M_2, M2CM_{2C}, MTM_T^\star, and MT2WM_{T2}^W, play an essential role in searches for new physics at hadron colliders. The calculation of these variables generally involves constrained minimization in a large parameter space, which is numerically challenging. We provide a C++ code, OPTIMASS, which interfaces with the MINUIT library to perform this constrained minimization using the Augmented Lagrangian Method. The code can be applied to arbitrarily general event topologies and thus allows the user to significantly extend the existing set of kinematic variables. We describe this code and its physics motivation, and demonstrate its use in the analysis of the fully leptonic decay of pair-produced top quarks using the M2M_2 variables.Comment: 39 pages, 12 figures, (1) minor revision in section 3, (2) figure added in section 4.3, (3) reference added and (4) matched with published versio

    Physical properties of metal-doped zinc oxide films for surface acoustic wave application

    Get PDF
    Metal-doped ZnO [MZO] thin films show changes of the following properties by a dopant. First, group III element (Al, In, Ga)-doped ZnO thin films have a high conductivity having an n-type semiconductor characteristic. Second, group I element (Li, Na, K)-doped ZnO thin films have high resistivity due to a dopant that accepts a carrier. The metal-doped ZnO (M = Li, Ag) films were prepared by radio frequency magnetron sputtering on glass substrates with the MZO targets. We investigated on the optical and electrical properties of the as-sputtered MZO films as dependences on the doping contents in the targets. All the MZO films had shown a preferred orientation in the [002] direction. As the quantity and the variety of metal dopants were changed, the crystallinity and the transmittance, as well as optical band gap were changed. The electrical resistivity was also changed with changing metal doping amounts and kinds of dopants. An epitaxial Li-doped ZnO film has a high resistivity and very smooth surface; it will have the most optimum conditions which can be used for the piezoelectric devices

    Nanometer sized Ni-dot/Ag/Pt structure for high reflectance of p-type contact metal in InGaN light emitting diodes

    Get PDF
    The Ni-dot/Ag/Pt layer, where Ni-dot layer is formed of nanometer sized Ni dots, has been used to improve the reflectivity from the surface of p-type GaN in a light emitting diode (LED). Comparing with Ni/Ag/Pt layer, where Ni layer is a thin film, the Ni-dot/Ag/Pt structure shows significantly improved reflectivity with stable contact resistivity. The optical output power and external quantum efficiency of InGaN LEDs with Ni-dot/Ag/Pt structure for p-metal have improved by 28% and 29%, respectively, over the results of Ni/Ag/Pt structure

    One-Parameter Squeezed Gaussian States of Time-Dependent Harmonic Oscillator and Selection Rule for Vacuum States

    Full text link
    By using the invariant method we find one-parameter squeezed Gaussian states for both time-independent and time-dependent oscillators. The squeezing parameter is expressed in terms of energy expectation value for time-independent case and represents the degree of mixing positive and negative frequency solutions for time-dependent case. A {\it minimum uncertainty proposal} is advanced to select uniquely vacuum states at each moment of time. We show that the Gaussian states with minimum uncertainty coincide with the true vacuum state for time-independent oscillator and the Bunch-Davies vacuum for a massive scalar field in a de Sitter spacetime.Comment: 13 Pages, ReVTeX, no figure

    New Asymptotic Expanstion Method for the Wheeler-DeWitt Equation

    Full text link
    A new asymptotic expansion method is developed to separate the Wheeler-DeWitt equation into the time-dependent Schr\"{o}dinger equation for a matter field and the Einstein-Hamilton-Jacobi equation for the gravitational field including the quantum back-reaction of the matter field. In particular, the nonadiabatic basis of the generalized invariant for the matter field Hamiltonian separates the Wheeler-DeWitt equation completely in the asymptotic limit of mp2m_p^2 approaching infinity. The higher order quantum corrections of the gravity to the matter field are found. The new asymptotic expansion method is valid throughout all regions of superspace compared with other expansion methods with a certain limited region of validity. We apply the new asymptotic expansion method to the minimal FRW universe.Comment: 24 pages of Latex file, revte
    corecore