7 research outputs found

    A single gene (yes) controls pigmentation of eyes and scales in Heliothis virescens

    Get PDF
    A yellow-eyed mutant was discovered in a strain of Heliothis virescens, the tobacco budworm, that already exhibited a mutation for yellow scale, y. We investigated the inheritance of these visible mutations as candidate markers for transgenesis. Yellow eye was controlled by a single, recessive, autosomal factor, the same type of inheritance previously known for y. Presence of the recombinant mutants with yellow scales and wild type eyes in test crosses indicated independent segregation of genes for these traits. The recombinant class with wild type scales and yellow eyes was completely absent and there was a corresponding increase of the double mutant parental class having yellow scales and yellow eyes. These results indicated that a single factor for yellow eye also controlled yellow scales independently of y. This gene was named yes, for yellow eye and scale. We hypothesize that yes controls both eye and scale color through a deficiency in transport of pigment precursors in both the ommochrome and melanin pathways. The unlinked gene y likely controls an enzyme affecting the melanin pathway only. Both y and yes segregated independently of AceIn, acetylcholinesterase insensitivity, and sodium channel hscp, which are genes related to insecticide resistance

    A single gene ( yes

    No full text

    Inhibition of Pkhd1 Impairs Tubulomorphogenesis of Cultured IMCD Cells

    No full text
    Fibrocystin/polyductin (FPC), the gene product of PKHD1, is responsible for autosomal recessive polycystic kidney disease (ARPKD). This disease is characterized by symmetrically large kidneys with ectasia of collecting ducts. In the kidney, FPC predominantly localizes to the apical domain of tubule cells, where it associates with the basal bodies/primary cilia; however, the functional role of this protein is still unknown. In this study, we established stable IMCD (mouse inner medullary collecting duct) cell lines, in which FPC was silenced by short hairpin RNA inhibition (shRNA). We showed that inhibition of FPC disrupted tubulomorphogenesis of IMCD cells grown in three-dimensional cultures. Pkhd1-silenced cells developed abnormalities in cell-cell contact, actin cytoskeleton organization, cell-ECM interactions, cell proliferation, and apoptosis, which may be mediated by dysregulation of extracellular-regulated kinase (ERK) and focal adhesion kinase (FAK) signaling. These alterations in cell function in vitro may explain the characteristics of ARPKD phenotypes in vivo
    corecore