4,761 research outputs found
Proposal Flow: Semantic Correspondences from Object Proposals
Finding image correspondences remains a challenging problem in the presence
of intra-class variations and large changes in scene layout. Semantic flow
methods are designed to handle images depicting different instances of the same
object or scene category. We introduce a novel approach to semantic flow,
dubbed proposal flow, that establishes reliable correspondences using object
proposals. Unlike prevailing semantic flow approaches that operate on pixels or
regularly sampled local regions, proposal flow benefits from the
characteristics of modern object proposals, that exhibit high repeatability at
multiple scales, and can take advantage of both local and geometric consistency
constraints among proposals. We also show that the corresponding sparse
proposal flow can effectively be transformed into a conventional dense flow
field. We introduce two new challenging datasets that can be used to evaluate
both general semantic flow techniques and region-based approaches such as
proposal flow. We use these benchmarks to compare different matching
algorithms, object proposals, and region features within proposal flow, to the
state of the art in semantic flow. This comparison, along with experiments on
standard datasets, demonstrates that proposal flow significantly outperforms
existing semantic flow methods in various settings.Comment: arXiv admin note: text overlap with arXiv:1511.0506
Unsupervised Object Discovery and Localization in the Wild: Part-based Matching with Bottom-up Region Proposals
This paper addresses unsupervised discovery and localization of dominant
objects from a noisy image collection with multiple object classes. The setting
of this problem is fully unsupervised, without even image-level annotations or
any assumption of a single dominant class. This is far more general than
typical colocalization, cosegmentation, or weakly-supervised localization
tasks. We tackle the discovery and localization problem using a part-based
region matching approach: We use off-the-shelf region proposals to form a set
of candidate bounding boxes for objects and object parts. These regions are
efficiently matched across images using a probabilistic Hough transform that
evaluates the confidence for each candidate correspondence considering both
appearance and spatial consistency. Dominant objects are discovered and
localized by comparing the scores of candidate regions and selecting those that
stand out over other regions containing them. Extensive experimental
evaluations on standard benchmarks demonstrate that the proposed approach
significantly outperforms the current state of the art in colocalization, and
achieves robust object discovery in challenging mixed-class datasets.Comment: CVPR 201
Proposal Flow
Finding image correspondences remains a challenging problem in the presence
of intra-class variations and large changes in scene layout.~Semantic flow
methods are designed to handle images depicting different instances of the same
object or scene category. We introduce a novel approach to semantic flow,
dubbed proposal flow, that establishes reliable correspondences using object
proposals. Unlike prevailing semantic flow approaches that operate on pixels or
regularly sampled local regions, proposal flow benefits from the
characteristics of modern object proposals, that exhibit high repeatability at
multiple scales, and can take advantage of both local and geometric consistency
constraints among proposals. We also show that proposal flow can effectively be
transformed into a conventional dense flow field. We introduce a new dataset
that can be used to evaluate both general semantic flow techniques and
region-based approaches such as proposal flow. We use this benchmark to compare
different matching algorithms, object proposals, and region features within
proposal flow, to the state of the art in semantic flow. This comparison, along
with experiments on standard datasets, demonstrates that proposal flow
significantly outperforms existing semantic flow methods in various settings
Unsupervised Object Discovery and Tracking in Video Collections
This paper addresses the problem of automatically localizing dominant objects
as spatio-temporal tubes in a noisy collection of videos with minimal or even
no supervision. We formulate the problem as a combination of two complementary
processes: discovery and tracking. The first one establishes correspondences
between prominent regions across videos, and the second one associates
successive similar object regions within the same video. Interestingly, our
algorithm also discovers the implicit topology of frames associated with
instances of the same object class across different videos, a role normally
left to supervisory information in the form of class labels in conventional
image and video understanding methods. Indeed, as demonstrated by our
experiments, our method can handle video collections featuring multiple object
classes, and substantially outperforms the state of the art in colocalization,
even though it tackles a broader problem with much less supervision
SCNet: Learning Semantic Correspondence
This paper addresses the problem of establishing semantic correspondences
between images depicting different instances of the same object or scene
category. Previous approaches focus on either combining a spatial regularizer
with hand-crafted features, or learning a correspondence model for appearance
only. We propose instead a convolutional neural network architecture, called
SCNet, for learning a geometrically plausible model for semantic
correspondence. SCNet uses region proposals as matching primitives, and
explicitly incorporates geometric consistency in its loss function. It is
trained on image pairs obtained from the PASCAL VOC 2007 keypoint dataset, and
a comparative evaluation on several standard benchmarks demonstrates that the
proposed approach substantially outperforms both recent deep learning
architectures and previous methods based on hand-crafted features.Comment: ICCV 201
- …