363 research outputs found
Selectively enhanced expression of prophenoloxidase activating enzyme 1 (PPAE1) at a bacteria clearance site in the white shrimp, Litopenaeus vannamei
<p>Abstract</p> <p>Background</p> <p>The prophenoloxidase-activating (PO activating) system plays an important role in the crustacean innate immunity, particularly in wound healing and pathogen defense. A key member of this system is prophenoloxidase-activating enzyme (PPAE), which is the direct activator of prophenoloxidase (proPO). Despite their importance in crustacean PO activating system, the studies on them remain limited.</p> <p>Results</p> <p>Here we report on a PPAE of white shrimp, <it>Litopenaeus vannamei </it>(lvPPAE1), which showed 94% similarity to PPAE1 of <it>Penaeus monodon</it>. We found that lvPPAE1 in fluid hemocytes was down regulated after challenge by <it>Vibrio harveyi </it>but was enhanced when shrimps were exposed to a bacteria-rich environment for long-term. In <it>vivo </it>gene silence of lvPPAE1 by RNAi can significantly reduce the phenoloxidase activity (PO) and increase the susceptibility of shrimps to <it>V. harveyi</it>. Although lvPPAE1 was down-regulated in fluid hemocytes by <it>Vibrio </it>challenge, its expression increased significantly in gill after bacteria injection, which is the primary bacteria-clearance tissue.</p> <p>Conclusion</p> <p>Suppressed expression in fluid hemocytes and enhanced expression in gill indicates selectively enhanced expression at the bacterial clearance site. This is a novel feature for PPAE expression. The results will contribute to our understanding of the PO activating system in crustaceans.</p
Characterization of Porcine Endogenous Retrovirus Clones from the NIH Miniature Pig BAC Library
Pigs have been considered as donors for xenotransplantation in the replacement of human organs and tissues. However, porcine endogenous retroviruses (PERVs) might transmit new infectious disease to humans during xenotransplantation. To investigate PERV integration sites, 45 PERV-positive BAC clones, including 12 PERV-A, 16 PERV-B, and 17 PERV-C clones, were identified from the NIH miniature pig BAC library. The analysis of 12 selected full-length sequences of PERVs, including the long terminal repeat (LTR) region, identified the expected of open reading frame length, an indicative of active PERV, in all five PERV-C clones and one of the four PERV-B clones. Premature stop codons were observed in only three PERV-A clones. Also, eleven PERV integration sites were mapped using a 5000-rad IMpRH panel. The map locations of PERV-C clones have not been reported before, thus they are novel PERV clones identified in this study. The results could provide basic information for the elimination of site-specific PERVs in selection of pigs for xenotransplantation
Optimization of Enzymatic Pretreatment for the Production of Fermented Ginseng using Leaves, Stems and Roots of Ginseng
Abstract : This study sought to optimize the extraction and enzymatic treatment conditions of Panax ginseng leaves, stems, and roots for the production of fermented ginseng. The optimization enhanced the extraction of total saccharide, a nutrient and growth-activating factor for Lactobacillus bacteria. The hydrolysis of ginseng leaves, stems, and roots was tested with eight enzymes (Pentopan, Promozyme, Celluclast, Ultraflo, Pectinex, Ceremix, Viscozyme, and Tunicase). The enzymatic hydrolysis conditions were statistically optimized by the experimental design. Optimal particle size of ginseng raw material was <0.15 mm, and optimal hydrolysis occurred at a pH of 5.0-5.5, a reaction temperature of 55-60 o C, a Ceremix concentration of 1%, and a reaction time of 2 hr. Ceremix produced the highest dry matter yield and total saccharide extraction. Ginseng leaves were found to be the most suitable raw material for the production of fermented ginseng because they have higher carbohydrate and crude saponin contents than ginseng root
Effects of Glycyrrhizae Radix Pharmacopuncture Intravenous Injection on Ischemia-induced Acute Renal Failure in Rabbits
Objectives: The present study was undergone to determine whether Glycyrrhizae Radix pharmacopuncture intravenous injection exerts beneficial effect against the ischemia-induced acute renal failure in rabbits.
Methods: Rabbits were treated with Glycyrrhizae Radix pharmacopuncture via i.v., followed by renal ischemia/reperfusion. The fractional excretion of glucose and phosphate were measured and the malondialdehyde content was also determined. The morphological changes of cortical part of kidney also observed with light microscope.
Results: Renal ischemia/reperfusion caused increase of the fractional excretion of glucose and phosphate in ischemia-induced animals, which was prevented by Radix Glycyrrhizae extract treatment. Ischemia/reperfusion increased lipid peroxidation, which was prevented and morphological changes also altered by Radix Glycyrrhizae pharmacopuncture administration.
Conclusions: These results indicate that lipid peroxidation plays a critical role in ischemia-induced acute renal failure and Glycyrrhizae Radix pharmacopuncture exerts the protective effect against acute renal failure induced by renal ischemia/reperfusion
Epidermal Cysts in a Tacrolimus Treated Renal Transplant Recipient
Tacrolimus, a calcineurin inhibitor, formerly also known as FK506, is a macrolactam drug isolated from Streptomyces tsukubaensis. Its mode of action closely parallels the action of cyclosprorin A (CsA) and can be used for the treatment of inflammatory and autoimmune skin diseases in which systemic CsA has proved effective against psoriasis, pyoderma gangrenosum, atopic dermatitis, lupus erythematosus and graft versus host disease (GVHD). Although several cases of epidermal cysts have been reported in patients using cyclosporine and other immunosuppressants after organ transplantation; such types of cases have yet not been reported after administration of tacrolimus. However, we report herein a case of presence of multiple, various sized epidermal cysts in a renal transplant recipient receiving tacrolimus
An accurate method for quantifying and analyzing copy number variation in porcine KIT by an oligonucleotide ligation assay
<p>Abstract</p> <p>Background</p> <p>Aside from single nucleotide polymorphisms, copy number variations (CNVs) are the most important factors in susceptibility to genetic disorders because they affect expression levels of genes. In previous studies, pyrosequencing, mini-sequencing, real-time PCR, invader assays and other techniques have been used to detect CNVs. However, the higher the copy number in a genome, the more difficult it is to resolve the copies, so a more accurate method for measuring CNVs and assigning genotype is needed.</p> <p>Results</p> <p>PCR followed by a quantitative oligonucleotide ligation assay (qOLA) was developed for quantifying CNVs. The accuracy and precision of the assay were evaluated for porcine <it>KIT</it>, which was selected as a model locus. Overall, the root mean squares of bias and standard deviation of qOLA were 2.09 and 0.45, respectively. These values are less than half of those in the published pyrosequencing assay for analyzing CNV in porcine <it>KIT</it>. Using a combined method of qOLA and another pyrosequencing for quantitative analysis of <it>KIT </it>copies with spliced forms, we confirmed the segregation of <it>KIT </it>alleles in 145 F<sub>1 </sub>animals with pedigree information and verified the correct assignment of genotypes. In a diagnostic test on 100 randomly sampled commercial pigs, there was perfect agreement between the genotypes obtained by grouping observations on a scatter plot and by clustering using the nearest centroid sorting method implemented in PROC FASTCLUS of the SAS package. In a test on 159 Large White pigs, there were only two discrepancies between genotypes assigned by the two clustering methods (98.7% agreement), confirming that the quantitative ligation assay established here makes genotyping possible through the accurate measurement of high <it>KIT </it>copy numbers (>4 per diploid genome). Moreover, the assay is sensitive enough for use on DNA from hair follicles, indicating that DNA from various sources could be used.</p> <p>Conclusion</p> <p>We have established a high resolution quantification method using an oligonucleotide ligation assay to measure CNVs, and verified the reliability of genotype assignment for random animal samples using the nearest centroid sorting method. This new method will make it more practical to determine <it>KIT </it>CNV and to genotype the complicated <it>Dominant White/KIT </it>locus in pigs. This procedure could have wide applications for studying gene or segment CNVs in other species.</p
A Probiotic Mixture Regulates T Cell Balance and Reduces Atopic Dermatitis Symptoms in Mice
Atopic dermatitis (AD) is a chronic inflammatory skin disorder with a complex etiology involving the immune response. Recent studies have demonstrated the role of certain probiotics in the treatment and prevention of AD. However, the mechanism by which these probiotics regulate the immune system remains unclear. In this study, we examined the immunomodulatory capacity of Duolac ATP, a mixed formulation of probiotics, both in vitro and in vivo. Results showed that the expression of programmed death-ligand 1(PD-L1) was significantly upregulated on bone marrow-derived dendritic cells (BMDCs) treated with Duolac ATP. Furthermore, the anti-inflammatory cytokines IL-10 and TGF-beta were both upregulated when BMDCs were treated with Duolac ATP. The percentage of proliferated regulatory T cells (Tregs) was enhanced when CD4+ T cells were co-cultured with Duolac ATP-treated BMDCs on plates coated with anti-CD3/CD28 antibodies. Intriguingly, IL-10 secretion from CD4+ T cells was also observed. The AD symptoms, histologic scores, and serum IgE levels in AD mice were significantly decreased after oral treatment with Duolac ATP. Moreover, the Th1-mediated response in AD-induced mice treated with oral Duolac ATP showed upregulation of IL-2 and IFN-gamma as well as of downstream signaling molecules T-bet, STAT-1, and STAT-4. Conversely, Duolac ATP suppressed Th2 and Th17 responses in AD-like mice, as evidenced by the downregulation of GATA-3, C-maf, IL-4, IL-5, and IL-17. Additionally, Duolac ATP increased the number of Tregs found at Peyer’s patches (PP) in treated AD mice. These results suggest that Duolac ATP modulates DCs to initiate both Th1 and Treg responses in AD mice. Thus, Duolac ATP represents a potential preventative agent against AD and could serve as an effective immunomodulator in AD patients
Locally-applied 5-fluorouracil-loaded slow-release patch prevents pancreatic cancer growth in an orthotopic mouse model
To obtain improved efficacy against pancreatic cancer, we investigated the efficacy and safety of a locally-applied 5-fluorouracil (5-FU)-loaded polymeric patch on pancreatic tumors in an orthotopic nude-mouse model. The 5-FU-releasing polymeric patch was produced by 3D printing. After application of the patch, it released the drug slowly for 4 weeks, and suppressed BxPC-3 pancreas cancer growth. Luciferase imaging of BxPC3-Luc cells implanted in the pancreas was performed longitudinally. The drug patch delivered a 30.2 times higher level of 5-FU than an intra-peritoneal (i.p.) bolus injection on day-1. High 5-FU levels were accumulated within one week by the patch. Four groups were compared for efficacy of 5-FU. Drug-free patch as a negative control (Group I); 30% 5-FU-loaded patch (4.8 mg) (Group II); 5-FU i.p. once (4.8 mg) (Group III); 5-FU i.p. once a week (1.2 mg), three times (Group IV). The tumor growth rate was significantly faster in Group I than Group II, III, IV (p=0.047 at day-8, p=0.022 at day-12, p=0.002 at day-18 and p=0.034 at day-21). All mice in Group III died of drug toxicity within two weeks after injection. Group II showed more effective suppression of tumor growth than Group IV (p=0.018 at day-12 and p=0.017 at day-21). Histological analysis showed extensive apoptosis in the TUNEL assay and by Ki -67 staining. Western blotting confirmed strong expression of cleaved caspase-3 in Group II. No significant changes were found hematologically and histologically in the liver, kidney and spleen in Groups I, II, IV but were found in Group III.113Ysciescopu
Gene expression profiling of cancer stem cell in human lung adenocarcinoma A549 cells
<p>Abstract</p> <p>Background</p> <p>The studies on cancer-stem-cells (CSCs) have attracted so much attention in recent years as possible therapeutic implications. This study was carried out to investigate the gene expression profile of CSCs in human lung adenocarcinoma A549 cells.</p> <p>Results</p> <p>We isolated CSCs from A549 cell line of which side population (SP) phenotype revealed several stem cell properties. After staining the cell line with Hoechst 33342 dye, the SP and non-side population (non-SP) cells were sorted using flow cytometric analysis. The mRNA expression profiles were measured using an Affymetrix GeneChip<sup>® </sup>oligonucleotide array. Among the sixty one differentially expressed genes, the twelve genes inclusive three poor prognostic genes; Aldo-keto reductase family 1, member C1/C2 (AKR1C1/C2), Transmembrane 4 L six family member 1 nuclear receptor (TM4SF1), and Nuclear receptor subfamily 0, group B, member 1 (NR0B1) were significantly up-regulated in SP compared to non-SP cells.</p> <p>Conclusion</p> <p>This is the first report indicating the differences of gene expression pattern between SP and non-SP cells in A549 cells. We suggest that the up-regulations of the genes AKR1C1/C2, TM4SF1 and NR0B1 in SP of human adenocarcinoma A549 cells could be a target of poor prognosis in anti-cancer therapy.</p
In vitro photodynamic therapy of methylene blue-loaded acetyl resistant starch nanoparticles
Background : Combination therapies comprising multiple methods, such as photodynamic therapy have been applied to be complements chemotherapy as they increase the therapeutic efficiency by enabling the intelligent drug delivery to target sites by exposing the photosensitizer to light and activating it in the tumor tissue. This study evaluated in vitro photodynamic therapy of methylene blue (MB)-loaded acetyl resistant starch (ARS) nanoparticles (NPs).
Methods : ARS was synthesized by the reaction between resistant starch (RS) and acetic anhydride. MB-loaded ARS NPs and ARS NPs were prepared by a single emulsion method. Synthesized ARS was measured by NMR. Prepared ARS NPs and MB-loaded ARS NPs were characterized by transmission electron microscopy (TEM), dynamic light scattering (DLS), X-ray diffraction, UV/Vis, and circular dichroism (CD). MB-loaded ARS NPs were treated in mouse colon cancer cells (CT-26) and they were treated under near-infrared (NIR) laser irradiation.
Results : Synthesis of ARS was confirmed by NMR and the degree of substitutions in the ARS was 7.1. The morphologies of ARS NPs observed by TEM were spherical shapes and the particle sizes of ARS NPs were 173.4 nm with a surface charge of − 17.24 mV. The d-spacing of ARS NPs was smaller than those of RS and the conformational changes of RS occurred by the formation of self-assembled polymeric NPs with induction of CD of the MB by chiral ARS NPs. The phototoxicity of CT-26 cells treated by MB-loaded ARS NPs dramatically decreased in a dose-dependent manner under NIR laser irradiation compared to free MB.
Conclusion : This study demonstrated the ordered nanosized structures in the ARS NPs and conformational change from random coil structure of RS to alpha-helices one of ARS occurred and CD of the achiral MB was induced. The MB-loaded ARS NPs showed a higher generation of reactive oxygen species (ROS) in the CT-26 cells than free MB with the NIR laser irradiation and resulting in phototoxicity under irradiation.This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2020R111A1A01053275)
- …