21 research outputs found

    Charge density wave surface reconstruction in a van der Waals layered material

    Full text link
    Surface reconstruction plays a vital role in determining the surface electronic structure and chemistry of semiconductors and metal oxides. However, it has been commonly believed that surface reconstruction does not occur in van der Waals layered materials, as they do not undergo significant bond breaking during surface formation. In this study, we present evidence that charge density wave (CDW) order in these materials can, in fact, cause CDW surface reconstruction through interlayer coupling. Using density functional theory calculations on the 1T-TaS2 surface, we reveal that CDW reconstruction, involving concerted small atomic displacements in the subsurface layer, results in a significant modification of the surface electronic structure, transforming it from a Mott insulator to a band insulator. This new form of surface reconstruction explains several previously unexplained observations on the 1T-TaS2 surface and has important implications for interpreting surface phenomena in CDW-ordered layered materials.Comment: 20 pages, 6 figures (Supplementary Information: 5 Pages, 3 figures

    Correlated electronic states at domain walls of a Mott-charge-density-wave insulator 1T-TaS2

    Get PDF
    Domain walls in interacting electronic systems can have distinct localized states, which often govern physical properties and may lead to unprecedented functionalities and novel devices. However, electronic states within domain walls themselves have not been clearly identified and understood for strongly correlated electron systems. Here, we resolve the electronic states localized on domain walls in a Mott-charge-density-wave(CDW) insulator 1T-TaS2 using scanning tunneling spectroscopy. We establish that the domain wall state decomposes into two nonconducting states located at the center of domain walls and edges of domains. Theoretical calculations reveal their atomistic origin as the local reconstruction of domain walls under the strong influence of electron correlation. Our results introduce a concept for the domain wall electronic property, the wall's own internal degrees of freedom, which is potentially related to the controllability of domain wall electronic properties

    Nanofabricated tips for device-based scanning tunneling microscopy

    Full text link
    We report on the fabrication and performance of a new kind of tip for scanning tunneling microscopy. By fully incorporating a metallic tip on a silicon chip using modern micromachining and nanofabrication techniques, we realize so-called smart tips and show the possibility of device-based STM tips. Contrary to conventional etched metal wire tips, these can be integrated into lithographically defined electrical circuits. We describe a new fabrication method to create a defined apex on a silicon chip and experimentally demonstrate the high performance of the smart tips, both in stability and resolution. In situ tip preparation methods are possible and we verify that they can resolve the herringbone reconstruction and Friedel oscillations on Au(111) surfaces. We further present an overview of possible applications

    Single-electron charge transfer into putative Majorana and trivial modes in individual vortices

    Full text link
    Majorana bound states are putative collective excitations in solids that exhibit the self-conjugate property of Majorana fermions - they are their own antiparticles. In iron-based superconductors, zero-energy states in vortices have been reported as potential Majorana bound states, but the evidence remains controversial. Here, we use scanning tunneling noise spectroscopy to study the tunneling process into vortex bound states in the conventional superconductor NbSe2, and in the putative Majorana platform FeTe0.55Se0.45. We find that tunneling into vortex bound states in both cases exhibits charge transfer of a single electron charge. Our data for the zero-energy bound states in FeTe0.55Se0.45 exclude the possibility of Yu-Shiba-Rusinov states and are consistent with both Majorana bound states and trivial vortex bound states. Our results open an avenue for investigating the exotic states in vortex cores and for future Majorana devices, although further theoretical investigations involving charge dynamics and superconducting tips are necessary.Comment: 15 pages, 4 figures, and 16 pages for supplementary informatio

    Nanoscale manipulation of the Mott insulating state coupled to charge order in 1T-TaS2

    Get PDF
    The controllability over strongly correlated electronic states promises unique electronic devices. A recent example is an optically induced ultrafast switching device based on the transition between the correlated Mott insulating state and a metallic state of a transition metal dichalcogenide 1T-TaS2. However, the electronic switching has been challenging and the nature of the transition has been veiled. Here we demonstrate the nanoscale electronic manipulation of the Mott state of 1T-TaS2. The voltage pulse from a scanning tunnelling microscope switches the insulating phase locally into a metallic phase with irregularly textured domain walls in the charge density wave order inherent to this Mott state. The metallic state is revealed as a correlated phase, which is induced by the moderate reduction of electron correlation due to the charge density wave decoherence.131321sciescopu

    Origin of the Insulating Phase and First-Order Metal-Insulator Transition in 1T-TaS2

    Get PDF
    Using density functional theory calculations, we investigate the origin of the insulating phase and metal-insulator transition (MIT) in octahedral tantalum disulfide (1T-TaS2), a layered van der Waals material with a prominent two-dimensional (2D) charge density wave (CDW) order. We show that the MIT is driven not by the 2D order itself, but by the vertical ordering of the 2D CDWs or the 3D CDW order. We identify two exceptionally stable 3D CDW configurations; one is insulating and the other is metallic. The competition and mixing of the two CDW configurations account for many mysterious features of the MIT in 1T-TaS2, including the pressure- and doping-induced transitions and the hysteresis behavior. The present results emphasize that interlayer electronic ordering can play an important role in electronic phase transitions in layered materials. © 2019 American Physical Societ

    Interplay of electron-electron and electron-phonon interactions in the low-temperature phase of 1T-TaS2

    Get PDF
    We investigate the interplay of the electron-electron and electron-phonon interactions in the electronic structure of an exotic insulating state in the layered dichalcogenide 1T-TaS2, where the charge-density-wave (CDW) order coexists with a Mott correlation gap. Scanning tunneling microscopy and spectroscopy measurements with high spatial and energy resolution determine unambiguously the CDW and the Mott gap as 0.20-0.24 eV and 0.32 eV, respectively, through the real space electron phases measured across the multiply formed energy gaps. An unusual local reduction of the Mott gap is observed on the defect site, which indicates the renormalization of the on-site Coulomb interaction by the electron-phonon coupling as predicted by the Hubbard-Holstein model. The Mott-gap renormalization provides insight into the disorder-induced quasimetallic phases of 1T-TaS2. © 2015 American Physical Society. ©2015 American Physical Society113131sciescopu
    corecore