73 research outputs found
Spin and orbital magnetic moments of size-selected iron, cobalt, and nickel clusters and their link to the bulk phase diagrams
Spin and orbital magnetic moments of cationic iron, cobalt, and nickel
clusters have been determined from x-ray magnetic circular dichroism
spectroscopy. In the size regime of atoms, these clusters show
strong ferromagnetism with maximized spin magnetic moments of 1~ per
empty state because of completely filled majority spin bands. The
only exception is where an unusually low average spin
magnetic moment of ~ per unoccupied state is
detected; an effect, which is neither observed for nor
.\@ This distinct behavior can be linked to the existence
and accessibility of antiferromagnetic, paramagnetic, or nonmagnetic phases in
the respective bulk phase diagrams of iron, cobalt, and nickel. Compared to the
experimental data, available density functional theory calculations generally
seem to underestimate the spin magnetic moments significantly. In all clusters
investigated, the orbital magnetic moment is quenched to \,\% of the
atomic value by the reduced symmetry of the crystal field. The magnetic
anisotropy energy is well below 65 eV per atom
Variability of CO2, CH4, and O2 concentration in the vicinity of a closed mining shaft in the light of extreme weather events—numerical simulations
This is the final version. Available from MDPI via the DOI in this record. Data Availability Statement:
Data are contained within the article.With climate change, more intense weather phenomena can be expected, including pressure drops related to the arrival of an atmospheric front. Such drops of pressure are the main reason for gas emissions from closed mines to the surface, and a closed, empty mine shaft is the most likely route of this emission. Among the gases emitted, the most important are carbon dioxide and methane, creating a twofold problem—greenhouse gas emissions and gas hazards. The work presented in this paper simulated the spread of the mentioned gases near such an abandoned shaft for four variants: model validation, the most dangerous situations found during measurements with or without wind, and a forecast variant for a possible future pressure drop. It was found that a momentary CO2 emission of 0.69 m3/s and a momentary CH4 emission of 0.29 m3/s are possible, which for one hour of the appropriate drop would give hypothetically 2484 m3 CO2 and 1044 m3 CH4. In terms of gas hazards, the area that should be monitored and protected may exceed 25 m from a closed shaft in the absence of wind influence. The wind spreads the emitted gases to distances exceeding 50 m but dilutes them significantly.Research Fund for Coal and Steel
Building nonparametric -body force fields using Gaussian process regression
Constructing a classical potential suited to simulate a given atomic system
is a remarkably difficult task. This chapter presents a framework under which
this problem can be tackled, based on the Bayesian construction of
nonparametric force fields of a given order using Gaussian process (GP) priors.
The formalism of GP regression is first reviewed, particularly in relation to
its application in learning local atomic energies and forces. For accurate
regression it is fundamental to incorporate prior knowledge into the GP kernel
function. To this end, this chapter details how properties of smoothness,
invariance and interaction order of a force field can be encoded into
corresponding kernel properties. A range of kernels is then proposed,
possessing all the required properties and an adjustable parameter
governing the interaction order modelled. The order best suited to describe
a given system can be found automatically within the Bayesian framework by
maximisation of the marginal likelihood. The procedure is first tested on a toy
model of known interaction and later applied to two real materials described at
the DFT level of accuracy. The models automatically selected for the two
materials were found to be in agreement with physical intuition. More in
general, it was found that lower order (simpler) models should be chosen when
the data are not sufficient to resolve more complex interactions. Low GPs
can be further sped up by orders of magnitude by constructing the corresponding
tabulated force field, here named "MFF".Comment: 31 pages, 11 figures, book chapte
Machine-learning of atomic-scale properties based on physical principles
We briefly summarize the kernel regression approach, as used recently in
materials modelling, to fitting functions, particularly potential energy
surfaces, and highlight how the linear algebra framework can be used to both
predict and train from linear functionals of the potential energy, such as the
total energy and atomic forces. We then give a detailed account of the Smooth
Overlap of Atomic Positions (SOAP) representation and kernel, showing how it
arises from an abstract representation of smooth atomic densities, and how it
is related to several popular density-based representations of atomic
structure. We also discuss recent generalisations that allow fine control of
correlations between different atomic species, prediction and fitting of
tensorial properties, and also how to construct structural kernels---applicable
to comparing entire molecules or periodic systems---that go beyond an additive
combination of local environments
A Hepatic Protein, Fetuin-A, Occupies a Protective Role in Lethal Systemic Inflammation
A liver-derived protein, fetuin-A, was first purified from calf fetal serum in 1944, but its potential role in lethal systemic inflammation was previously unknown. This study aims to delineate the molecular mechanisms underlying the regulation of hepatic fetuin-A expression during lethal systemic inflammation (LSI), and investigated whether alterations of fetuin-A levels affect animal survival, and influence systemic accumulation of a late mediator, HMGB1.LSI was induced by endotoxemia or cecal ligation and puncture (CLP) in fetuin-A knock-out or wild-type mice, and animal survival rates were compared. Murine peritoneal macrophages were challenged with exogenous (endotoxin) or endogenous (IFN-γ) stimuli in the absence or presence of fetuin-A, and HMGB1 expression and release was assessed. Circulating fetuin-A levels were decreased in a time-dependent manner, starting between 26 h, reaching a nadir around 24-48 h, and returning towards base-line approximately 72 h post onset of endotoxemia or sepsis. These dynamic changes were mirrored by an early cytokine IFN-γ-mediated inhibition (up to 50-70%) of hepatic fetuin-A expression. Disruption of fetuin-A expression rendered animals more susceptible to LSI, whereas supplementation of fetuin-A (20-100 mg/kg) dose-dependently increased animal survival rates. The protection was associated with a significant reduction in systemic HMGB1 accumulation in vivo, and parallel inhibition of IFN-γ- or LPS-induced HMGB1 release in vitro.These experimental data suggest that fetuin-A is protective against lethal systemic inflammation partly by inhibiting active HMGB1 release
XLIV Konferencja Komitetu Nauk o Żywności i Żywieniu PAN: nauka, technologia i innowacje w żywności i żywieniu
Streszczenia w jęz. angielskimWydarzenie: XLIV Konferencja Komitetu
Nauk o Żywności i Żywieniu PAN; Łódź, 3-4 lipca 2019 r.; http://pan.binoz.p.lodz.plOrganizator konferencji: Wydział Biotechnologii i Nauk o Żywności PŁ; Komitet Nauk o Żywności i Żywieniu PAN;
Polskie Towarzystwo Technologów ŻywnościProjekt graficzny okładki: Grzelczyk, J.Projekt graficzny okładki: Klewicki, R.Skład: Oracz, J.Za treść zamieszczonych materiałów odpowiadają ich autorzy.Sesje Naukowe Komitetu Nauk o Żywności i Żywieniu Polskiej Akademii Nauk (KNoŻiŻ PAN) są organizowane przez krajowe ośrodki akademickie związane z naukami o żywności i żywieniu w dwuletnich cyklach. Sesje te stanowią największe w skali kraju forum prezentacji najnowszych osiągnięć naukowych i technologicznych w dziedzinie technologii żywności i żywienia człowieka, jak również wymiany poglądów oraz doświadczeń pracowników jednostek naukowych i przedstawicieli przemysłu spożywczego. Tematyka XLIV Sesji dotyczyć będzie szeroko pojętej problematyki związanej z oddziaływaniem żywności i odżywiania na zdrowie człowieka
Two-year follow-up of Helicobacter pylori infection in C57BL/6 and Balb/cA mice
Helicobacter pylori infection is associated with chronic gastritis, peptic ulcer disease, gastric adenocarcinoma and MALT lymphoma. We previously found high-grade lymphoma after 13 months' H. pylori infection in C57BL/6 mice. In this study we followed H. pylori infection by three different isolates in C57BL/6 and Balb/cA mice for 23 months. Six-week-old C57BL/6 and Balb/cA mice were infected with H. pylori strains 119p (CagA+, VacA+), SS1 (CagA+, VacA+) and G50 (CagA-, VacA-). Mice were followed at 2 weeks, 10 weeks and 23 months post-inoculation (p.i.) by culture, histopathology and serology. Strain G50 was only reisolated from mice 2 weeks p.i. There was no difference in colonization between strain 119p and SS1 at 10 weeks p.i., whereas SS1 gave 100% colonization versus 119p gave 50% 23 months p.i.. Interestingly, the inflammation score was higher in mice infected with strain 119p than with SS1 10-week p.i., and there were lymphoepithelial lesions in mice infected with strain 119p and G50 but not with SS1 at 23 months post-infection. Eight mice infected with strains 119p and G50 developed gastric lymphoma (grade 5 and 4). One C57BL/6 mouse infected with strain 119p developed hepatocellular carcinoma after 23 months. Immunoblot showed specific bands of 2633 kDa against H. pylori in infected mice, and two mice infected with strain SSI reacted with antibodies to the 120 kDa CagA toxin. Conclusion: A reproducible animal model for H. pylori-induced lymphoma and possibly hepatocellular carcinoma is described. Strain diversity may lead to different outcomes of H. pylori infection
- …