8 research outputs found

    Viral Profiling Identifies Multiple Subtypes of Kaposi's Sarcoma

    Get PDF
    ABSTRACTKaposi’s sarcoma (KS), caused by KS-associated herpesvirus (KSHV), is the most common cancer among HIV-infected patients in Malawi and in the United States today. In Malawi, KSHV is endemic. We conducted a cross-sectional study of patients with HIV infection and KS with no history of chemo- or antiretroviral therapy (ART). Seventy patients were enrolled. Eighty-one percent had T1 (advanced) KS. Median CD4 and HIV RNA levels were 181cells/mm3 and 138,641 copies/ml, respectively. We had complete information and suitable plasma and biopsy samples for 66 patients. For 59/66 (89%) patients, a detectable KSHV load was found in plasma (median, 2,291 copies/ml; interquartile range [IQR], 741 to 5,623). We utilized a novel KSHV real-time quantitative PCR (qPCR) array with multiple primers per open reading frame to examine KSHV transcription. Seventeen samples exhibited only minimal levels of KSHV mRNAs, presumably due to the limited number of infected cells. For all other biopsy samples, the viral latency locus (LANA, vCyc, vFLIP, kaposin, and microRNAs [miRNAs]) was transcribed abundantly, as was K15 mRNA. We could identify two subtypes of treatment-naive KS: lesions that transcribed viral RNAs across the length of the viral genome and lesions that displayed only limited transcription restricted to the latency locus. This finding demonstrates for the first time the existence of multiple subtypes of KS lesions in HIV- and KS-treatment naive patients.IMPORTANCEKS is the leading cancer in people infected with HIV worldwide and is causally linked to KSHV infection. Using viral transcription profiling, we have demonstrated the existence of multiple subtypes of KS lesions for the first time in HIV- and KS-treatment-naive patients. A substantial number of lesions transcribe mRNAs which encode the viral kinases and hence could be targeted by the antiviral drugs ganciclovir or AZT in addition to chemotherapy

    Development and validation of quantitative PCR assays for HIV-associated cryptococcal meningitis in sub-Saharan Africa: a diagnostic accuracy study

    Get PDF
    Background: HIV-associated cryptococcal meningitis is the second leading cause of AIDS-related deaths, with a 10-week mortality rate of 25–30%. Fungal load assessed by colony-forming unit (CFU) counts is used as a prognostic marker and to monitor response to treatment in research studies. PCR-based assessment of fungal load could be quicker and less labour-intensive. We sought to design, optimise, and validate quantitative PCR (qPCR) assays for the detection, identification, and quantification of Cryptococcus infections in patients with cryptococcal meningitis in sub-Saharan Africa. Methods: We developed and validated species-specific qPCR assays based on DNA amplification of QSP1 (QSP1A specific to Cryptococcus neoformans, QSP1B/C specific to Cryptococcus deneoformans, and QSP1D specific to Cryptococcus gattii species) and a pan-Cryptococcus assay based on a multicopy 28S rRNA gene. This was a longitudinal study that validated the designed assays on cerebrospinal fluid (CSF) of 209 patients with cryptococcal meningitis at baseline (day 0) and during anti-fungal therapy (day 7 and day 14), from the AMBITION-cm trial in Botswana and Malawi (2018–21). Eligible patients were aged 18 years or older and presenting with a first case of cryptococcal meningitis. Findings: When compared with quantitative cryptococcal culture as the reference, the sensitivity of the 28S rRNA was 98·2% (95% CI 95·1–99·5) and of the QSP1 assay was 90·4% (85·2–94·0) in CSF at day 0. Quantification of the fungal load with QSP1 and 28S rRNA qPCR correlated with quantitative cryptococcal culture (R2=0·73 and R2=0·78, respectively). Both Botswana and Malawi had a predominant C neoformans prevalence of 67% (95% CI 55–75) and 68% (57–73), respectively, and lower C gattii rates of 21% (14–31) and 8% (4–14), respectively. We identified ten patients that, after 14 days of treatment, harboured viable but non-culturable yeasts based on QSP1 RNA detection (without any positive CFU in CSF culture). Interpretation: QSP1 and 28S rRNA assays are useful in identifying Cryptococcus species. qPCR results correlate well with baseline quantitative cryptococcal culture and show a similar decline in fungal load during induction therapy. These assays could be a faster alternative to quantitative cryptococcal culture to determine fungal load clearance. The clinical implications of the possible detection of viable but non-culturable cells in CSF during induction therapy remain unclear. Funding: European and Developing Countries Clinical Trials Partnership; Swedish International Development Cooperation Agency; Wellcome Trust/UK Medical Research Council/UKAID Joint Global Health Trials; and UK National Institute for Health Research

    Development and validation of quantitative PCR assays for HIV-associated cryptococcal meningitis in sub-Saharan Africa: a diagnostic accuracy study

    Get PDF
    Background: HIV-associated cryptococcal meningitis is the second leading cause of AIDS-related deaths, with a 10-week mortality rate of 25–30%. Fungal load assessed by colony-forming unit (CFU) counts is used as a prognostic marker and to monitor response to treatment in research studies. PCR-based assessment of fungal load could be quicker and less labour-intensive. We sought to design, optimise, and validate quantitative PCR (qPCR) assays for the detection, identification, and quantification of Cryptococcus infections in patients with cryptococcal meningitis in sub-Saharan Africa. Methods: We developed and validated species-specific qPCR assays based on DNA amplification of QSP1 (QSP1A specific to Cryptococcus neoformans, QSP1B/C specific to Cryptococcus deneoformans, and QSP1D specific to Cryptococcus gattii species) and a pan-Cryptococcus assay based on a multicopy 28S rRNA gene. This was a longitudinal study that validated the designed assays on cerebrospinal fluid (CSF) of 209 patients with cryptococcal meningitis at baseline (day 0) and during anti-fungal therapy (day 7 and day 14), from the AMBITION-cm trial in Botswana and Malawi (2018–21). Eligible patients were aged 18 years or older and presenting with a first case of cryptococcal meningitis. Findings: When compared with quantitative cryptococcal culture as the reference, the sensitivity of the 28S rRNA was 98·2% (95% CI 95·1–99·5) and of the QSP1 assay was 90·4% (85·2–94·0) in CSF at day 0. Quantification of the fungal load with QSP1 and 28S rRNA qPCR correlated with quantitative cryptococcal culture (R2=0·73 and R2=0·78, respectively). Both Botswana and Malawi had a predominant C neoformans prevalence of 67% (95% CI 55–75) and 68% (57–73), respectively, and lower C gattii rates of 21% (14–31) and 8% (4–14), respectively. We identified ten patients that, after 14 days of treatment, harboured viable but non-culturable yeasts based on QSP1 RNA detection (without any positive CFU in CSF culture). Interpretation: QSP1 and 28S rRNA assays are useful in identifying Cryptococcus species. qPCR results correlate well with baseline quantitative cryptococcal culture and show a similar decline in fungal load during induction therapy. These assays could be a faster alternative to quantitative cryptococcal culture to determine fungal load clearance. The clinical implications of the possible detection of viable but non-culturable cells in CSF during induction therapy remain unclear

    Pregnancy Prevention and Condom Use Practices among HIV-Infected Women on Antiretroviral Therapy Seeking Family Planning in Lilongwe, Malawi

    Get PDF
    BackgroundPrograms for integration of family planning into HIV care must recognize current practices and desires among clients to appropriately target and tailor interventions. We sought to evaluate fertility intentions, unintended pregnancy, contraceptive and condom use among a cohort of HIV-infected women seeking family planning services within an antiretroviral therapy (ART) clinic.Methods200 women completed an interviewer-administered questionnaire during enrollment into a prospective contraceptive study at the Lighthouse Clinic, an HIV/ART clinic in Lilongwe, Malawi, between August and December 2010.ResultsMost women (95%) did not desire future pregnancy. Prior reported unintended pregnancy rates were high (69% unplanned and 61% unhappy with timing of last pregnancy). Condom use was inconsistent, even among couples with discordant HIV status, with lack of use often attributed to partner's refusal. Higher education, older age, lower parity and having an HIV negative partner were factors associated with consistent condom usage.DiscussionHigh rates of unintended pregnancy among these women underscore the need for integ rating family planning, sexually transmitted infection (STI) prevention, and HIV services. Contraceptive access and use, including condoms, must be improved with specific efforts to enlist partner support. Messages regarding the importance of condom usage in conjunction with more effective modern contraceptive methods for both infection and pregnancy prevention must continue to be reinforced over the course of ongoing ART treatment

    Development and validation of quantitative PCR assays for HIV-associated cryptococcal meningitis in sub-Saharan Africa: a diagnostic accuracy study

    No full text
    Background: HIV-associated cryptococcal meningitis is the second leading cause of AIDS-related deaths, with a 10-week mortality rate of 25–30%. Fungal load assessed by colony-forming unit (CFU) counts is used as a prognostic marker and to monitor response to treatment in research studies. PCR-based assessment of fungal load could be quicker and less labour-intensive. We sought to design, optimise, and validate quantitative PCR (qPCR) assays for the detection, identification, and quantification of Cryptococcus infections in patients with cryptococcal meningitis in sub-Saharan Africa. Methods: We developed and validated species-specific qPCR assays based on DNA amplification of QSP1 (QSP1A specific to Cryptococcus neoformans, QSP1B/C specific to Cryptococcus deneoformans, and QSP1D specific to Cryptococcus gattii species) and a pan-Cryptococcus assay based on a multicopy 28S rRNA gene. This was a longitudinal study that validated the designed assays on cerebrospinal fluid (CSF) of 209 patients with cryptococcal meningitis at baseline (day 0) and during anti-fungal therapy (day 7 and day 14), from the AMBITION-cm trial in Botswana and Malawi (2018–21). Eligible patients were aged 18 years or older and presenting with a first case of cryptococcal meningitis. Findings: When compared with quantitative cryptococcal culture as the reference, the sensitivity of the 28S rRNA was 98·2% (95% CI 95·1–99·5) and of the QSP1 assay was 90·4% (85·2–94·0) in CSF at day 0. Quantification of the fungal load with QSP1 and 28S rRNA qPCR correlated with quantitative cryptococcal culture (R2=0·73 and R2=0·78, respectively). Both Botswana and Malawi had a predominant C neoformans prevalence of 67% (95% CI 55–75) and 68% (57–73), respectively, and lower C gattii rates of 21% (14–31) and 8% (4–14), respectively. We identified ten patients that, after 14 days of treatment, harboured viable but non-culturable yeasts based on QSP1 RNA detection (without any positive CFU in CSF culture). Interpretation: QSP1 and 28S rRNA assays are useful in identifying Cryptococcus species. qPCR results correlate well with baseline quantitative cryptococcal culture and show a similar decline in fungal load during induction therapy. These assays could be a faster alternative to quantitative cryptococcal culture to determine fungal load clearance. The clinical implications of the possible detection of viable but non-culturable cells in CSF during induction therapy remain unclear. Funding: European and Developing Countries Clinical Trials Partnership; Swedish International Development Cooperation Agency; Wellcome Trust/UK Medical Research Council/UKAID Joint Global Health Trials; and UK National Institute for Health Research
    corecore