158 research outputs found

    Testing Embedded Memories in Telecommunication Systems

    Get PDF
    Extensive system testing is mandatory nowadays to achieve high product quality. Telecommunication systems are particularly sensitive to such a requirement; to maintain market competitiveness, manufacturers need to combine reduced costs, shorter life cycles, advanced technologies, and high quality. Moreover, strict reliability constraints usually impose very low fault latencies and a high degree of fault detection for both permanent and transient faults. This article analyzes major problems related to testing complex telecommunication systems, with particular emphasis on their memory modules, often so critical from the reliability point of view. In particular, advanced BIST-based solutions are analyzed, and two significant industrial case studies presente

    Online and Offline BIST in IP-Core Design

    Get PDF
    This article presents an online and offline built-in self-test architecture implemented as an SRAM intellectual-property core for telecommunication applications. The architecture combines fault-latency reduction, code-based fault detection, and architecture-based fault avoidance to meet reliability constraint

    ParPEST: a pipeline for EST data analysis based on parallel computing

    Get PDF
    Background Expressed Sequence Tags (ESTs) are short and error-prone DNA sequences generated from the 5' and 3' ends of randomly selected cDNA clones. They provide an important resource for comparative and functional genomic studies and, moreover, represent a reliable information for the annotation of genomic sequences. Because of the advances in biotechnologies, ESTs are daily determined in the form of large datasets. Therefore, suitable and efficient bioinformatic approaches are necessary to organize data related information content for further investigations. Results We implemented ParPEST (Parallel Processing of ESTs), a pipeline based on parallel computing for EST analysis. The results are organized in a suitable data warehouse to provide a starting point to mine expressed sequence datasets. The collected information is useful for investigations on data quality and on data information content, enriched also by a preliminary functional annotation. Conclusion The pipeline presented here has been developed to perform an exhaustive and reliable analysis on EST data and to provide a curated set of information based on a relational database. Moreover, it is designed to reduce execution time of the specific steps required for a complete analysis using distributed processes and parallelized software. It is conceived to run on low requiring hardware components, to fulfill increasing demand, typical of the data used, and scalability at affordable cost

    On integrating a proprietary and a commercial architecture for optimal BIST performances in SoCs

    Get PDF
    This paper presents the integration of a proprietary hierarchical and distributed test access mechanism called HD2BIST and a BIST insertion commercial tool. The paper briefly describes the architecture and the features of both the environments and it presents some experimental results obtained on an industrial So

    pATsi: Paralogs and singleton genes from Arabidopsis thaliana

    Get PDF
    Arabidopsis thaliana is widely accepted as a model species in plant biology. Its genome, due to its small size and diploidy, was the first to be sequenced among plants, making this species also a reference for plant comparative genomics. Nevertheless, the evolutionary mechanisms that shaped the Arabidopsis genome are still controversial. Indeed, duplications, translocations, inversions, and gene loss events that contributed to the current organization are difficult to be traced. A reliable identification of paralogs and single-copy genes is essential to understand these mechanisms. Therefore, we implemented a dedicated pipeline to identify paralog genes and classify single-copy genes into opportune categories. PATsi, a web-accessible database, was organized to allow the straightforward access to the paralogs organized into networks and to the classification of single-copy genes. This permits to efficiently explore the gene collection of Arabidopsis for evolutionary investigations and comparative genomics

    An effective distributed BIST architecture for RAMs

    Get PDF
    The present paper proposes a solution to the problem of testing a system containing many distributed memories of different sizes. The proposed solution relies in the development of a BIST architecture characterized by a single BIST processor, implemented as a microprogrammable machine and able to execute different test algorithms, a wrapper for each SRAM including standard memory BIST modules, and an interface block to manage the communications between the SRAM and the BIST processor. Both area overhead and routing costs are minimized, and a scan-based approach allows full diagnostic capabilities of the faults possibly detected in the memories under test

    HD2BIST: a hierarchical framework for BIST scheduling, data patterns delivering and diagnosis in SoCs

    Get PDF
    Proposes HD2BIST, a complete hierarchical framework for BIST scheduling, data patterns delivering, and diagnosis of a complex system including embedded cores with different test requirements as full scan cores, partial scan cores, or BIST-ready cores. The main goal of HD2BIST is to maximize and simplify the reuse of the built-in test architectures, giving the chip designer the highest flexibility in planning the overall SoC test strategy. HD2BIST defines a test access method able to provide a direct “virtual” access to each core of the system, and can be conceptually considered as a powerful complement to the P1500 standard, whose main target is to make the test interface of each core independent from the vendo

    Editorial: hypotheses about protein folding - the proteomic code and wonderfolds

    Get PDF
    Theoretical biology journals can contribute in many ways to the progress of knowledge. They are particularly well-placed to encourage dialogue and debate about hypotheses addressing problematical areas of research. An online journal provides an especially useful forum for such debate because of the option of posting comments within days of the publication of a contentious article

    Arabidopsis thaliana response to extracellular dna: Self versus nonself exposure

    Get PDF
    The inhibitory effect of extracellular DNA (exDNA) on the growth of conspecific individuals was demonstrated in different kingdoms. In plants, the inhibition has been observed on root growth and seed germination, demonstrating its role in plant\u2013soil negative feedback. Several hypotheses have been proposed to explain the early response to exDNA and the inhibitory effect of conspecific exDNA. We here contribute with a whole-plant transcriptome profiling in the model species Arabidopsis thaliana exposed to extracellular self-(conspecific) and nonself-(heterologous) DNA. The results highlight that cells distinguish self-from nonself-DNA. Moreover, confocal microscopy analyses reveal that nonself-DNA enters root tissues and cells, while self-DNA remains outside. Specifically, exposure to self-DNA limits cell permeability, affecting chloroplast functioning and reactive oxygen species (ROS) production, eventually causing cell cycle arrest, consistently with macroscopic observations of root apex necrosis, increased root hair density and leaf chlorosis. In contrast, nonself-DNA enters the cells triggering the activation of a hypersensitive response and evolving into systemic acquired resistance. Complex and different cascades of events emerge from exposure to extracellular selfor nonself-DNA and are discussed in the context of Damage-and Pathogen-Associated Molecular Patterns (DAMP and PAMP, respectively) responses
    • …
    corecore